Deep learning Courses
Deep Learning
EECS 598: Unsupervised Feature Learning
- instructor: Honglak Lee
- homepage: http://web.eecs.umich.edu/~honglak/teaching/eecs598/schedule.html
NVIDIA’s Deep Learning Courses
https://developer.nvidia.com/deep-learning-courses
ECE 6504 Deep Learning for Perception
- instructor: Dhruv Batra (Virginia Tech)
- homepage: https://computing.ece.vt.edu/~f15ece6504/
University of Oxford: Machine Learning: 2014-2015
- homepage: https://www.cs.ox.ac.uk/people/nando.defreitas/machinelearning/
- lectures: http://pan.baidu.com/s/1bndbxJh#path=%252FDeep%2520Learning%2520Lectures
- github: https://github.com/oxford-cs-ml-2015/
University of Birmingham 2014: Introduction to Neural Computation (Level 4/M); Neural Computation (Level 3/H)(by John A. Bullinaria)
http://www.cs.bham.ac.uk/~jxb/inc.html
CMU: Deep Learning
- instructor: Bhiksha Raj
- homepage: http://deeplearning.cs.cmu.edu/
stat212b: Topics Course on Deep Learning for Spring 2016
- homepage: http://joanbruna.github.io/stat212b/
- github: https://github.com/joanbruna/stat212b
- pan: http://pan.baidu.com/s/1sk7TKtf#path=%252Fstat212b%2520-%2520Topics%2520Course%2520on%2520Deep%2520Learning%2520for%2520Spring%25202016
Good materials on deep learning
http://eclass.cc/courselists/117_deep_learning
Deep Learning: Course by Yann LeCun at Collège de France 2016(Slides in English)
- homepage: https://www.facebook.com/yann.lecun/posts/10153505343037143
- downloads: https://drive.google.com/open?id=0BxKBnD5y2M8NclFWSXNxa0JlZTg
CSC321 Winter 2015: Introduction to Neural Networks
ELEG 5040: Advanced Topics in Signal Processing (Introduction to Deep Learning)
- instructors: Xiaogang Wang. The Chinese University of Hong Kong - Spring 2015
- intro: Homework, Homework Solutions, Lecture Notes, General Resources, Tutorial Notes, CUDA/GPU programming tutorial
- homepage: https://piazza.com/cuhk.edu.hk/spring2015/eleg5040/resources
Self-Study Courses for Deep Learning (NVIDIA Deep Learning Institute)
Introduction to Deep Learning
Deep Learning Courses
Creative Applications of Deep Learning w/ Tensorflow
- homepage: https://www.kadenze.com/courses/creative-applications-of-deep-learning-with-tensorflow-i/info
- github(ourse materials/Homework materials): https://github.com/pkmital/CADL
Deep Learning School: September 24-25, 2016 Stanford, CA
- homepage: http://www.bayareadlschool.org/
- day 1: https://www.youtube.com/watch?v=9dXiAecyJrY
- day 2: https://www.youtube.com/watch?v=eyovmAtoUx0
- github: https://github.com/lamblin/bayareadlschool
- reddit: https://amp.reddit.com/r/MachineLearning/comments/54shmi/great_new_introductory_talks_on_various_subfields/
- mirror: https://pan.baidu.com/s/1gfBe2fL
CSC 2541 Fall 2016: Differentiable Inference and Generative Models
CS 294-131: Special Topics in Deep Learning (Fall, 2016)
https://berkeley-deep-learning.github.io/cs294-dl-f16/
Fork of Lempitsky DL for HSE master students.
ELEG 5040: Advanced Topics in Signal Processing (Introduction to Deep Learning)
CS 20SI: Tensorflow for Deep Learning Research
- homepage: http://web.stanford.edu/class/cs20si/
- github: https://github.com/chiphuyen/stanford-tensorflow-tutorials
Deep Learning with TensorFlow
https://bigdatauniversity.com/courses/deep-learning-tensorflow/
Deep Learning course
CSE 599G1: Deep Learning System
- homepage: http://dlsys.cs.washington.edu/
- assignments: http://dlsys.cs.washington.edu/assignments
CSC 321 Winter 2017: Intro to Neural Networks and Machine Learning
http://www.cs.toronto.edu/~rgrosse/courses/csc321_2017/
Theories of Deep Learning (STATS 385)
- homepage: https://stats385.github.io/
- video: https://www.researchgate.net/project/Theories-of-Deep-Learning
- mirror: https://www.bilibili.com/video/av16136625/
With Video Lectures
Deep Learning: Taking machine learning to the next level (Udacity)
- instructor: Vincent Vanhoucke (Google), Arpan Chakraborty
- homepage: https://www.udacity.com/course/deep-learning–ud730
- homepage: https://cn.udacity.com/course/deep-learning–ud730/
- homepage: https://classroom.udacity.com/courses/ud730/lessons/6370362152/concepts/63798118150923
- assignments: https://github.com/tdhopper/udacity-deep-learning
- ipn: https://github.com/tensorflow/tensorflow/blob/master/tensorflow/examples/udacity/1_notmnist.ipynb
- ipn: http://nbviewer.jupyter.org/github/tensorflow/tensorflow/blob/master/tensorflow/examples/udacity/1_notmnist.ipynb
- assignments: https://github.com/Arn-O/udacity-deep-learning
Neural networks class - Université de Sherbrooke
- instructor: Hugo Larochelle
- youtube: https://www.youtube.com/playlist?list=PL6Xpj9I5qXYEcOhn7TqghAJ6NAPrNmUBH
- video: http://pan.baidu.com/s/1bnwEe8R
- course content: http://info.usherbrooke.ca/hlarochelle/neural_networks/content.html
- google group: https://groups.google.com/forum/#!forum/neural-networks-online-course
Deep Learning: Theoretical Motivations
- author: Yoshua Bengio
- published: Sept. 13, 2015. (Deep Learning Summer School, Montreal 2015)
- video: http://videolectures.net/deeplearning2015_bengio_theoretical_motivations/
- blog: http://rinuboney.github.io/2015/10/18/theoretical-motivations-deep-learning.html
University of Waterloo: STAT 946 - Deep Learning
- homepage: https://uwaterloo.ca/data-science/deep-learning
- video+slides: http://pan.baidu.com/s/1sjTRgjN
Deep Learning (2016) - BME 595A, Eugenio Culurciello, Purdue University
- course shedule: http://t.cn/RVYQa69?u=1402400261&m=4034720314226808&cu=2261580215&ru=1402400261&rm=4034708389597157
- mirror: https://pan.baidu.com/s/1hsBJOpQ
- video: https://www.youtube.com/playlist?list=PLNgy4gid0G9cbw5OjwG2jxvFqYDqkGnpJ
- mirror: https://pan.baidu.com/s/1bpKb5Cj
UVA DEEP LEARNING COURSE
- intro: MSc in Artificial Intelligence for the University of Amsterdam.
- homepage: http://uvadlc.github.io/
- assignments: https://github.com/uvadlc/uvadlc_practicals_2016
Practical Deep Learning For Coders, Part 1
- intro: 10 hours a week for 7 weeks
- homepage: http://course.fast.ai/
- youtube: https://www.youtube.com/playlist?list=PLfYUBJiXbdtS2UQRzyrxmyVHoGW0gmLSM
- mirror: https://pan.baidu.com/s/1eRLK742#list/path=%2F
- github: https://github.com/fastai/courses
- blog: http://www.kdnuggets.com/2016/12/deep-learning-coders-mooc-jeremy-howard.html
T81-558:Applications of Deep Neural Networks
- intro: Washington University
- course page: https://sites.wustl.edu/jeffheaton/t81-558/
- youtube: https://www.youtube.com/playlist?list=PLjy4p-07OYzulelvJ5KVaT2pDlxivl_BN
- github: https://github.com/jeffheaton/t81_558_deep_learning
CS294-129 Designing, Visualizing and Understanding Deep Neural Networks
- homepage: https://bcourses.berkeley.edu/courses/1453965/pages/cs294-129-designing-visualizing-and-understanding-deep-neural-networks
- lecture video: https://www.youtube.com/playlist?list=PLkFD6_40KJIxopmdJF_CLNqG3QuDFHQUm
MIT 6.S191: Introduction to Deep Learning
- homepage: http://introtodeeplearning.com/index.html
- schedule(Slides+Videos): http://introtodeeplearning.com/schedule.html
- github: https://github.com/yala/introdeeplearning
- youtube: https://www.youtube.com/playlist?list=PLkkuNyzb8LmxFutYuPA7B4oiMn6cjD6Rs
- mirror: https://pan.baidu.com/s/1qXXDCoG#list/path=%2F
Edx: Deep Learning Explained
- intro: Microsoft
- course page: https://www.edx.org/course/deep-learning-explained-microsoft-dat236x
Computer Vision
Stanford CS231n: Convolutional Neural Networks for Visual Recognition (Spring 2017)
- youtube: https://www.youtube.com/playlist?list=PL3FW7Lu3i5JvHM8ljYj-zLfQRF3EO8sYv
- mirror: http://www.bilibili.com/video/av13260183/
Stanford CS231n: Convolutional Neural Networks for Visual Recognition (Winter 2016)
- homepage: http://cs231n.stanford.edu/
- homepage: http://vision.stanford.edu/teaching/cs231n/index.html
- syllabus: http://vision.stanford.edu/teaching/cs231n/syllabus.html
- course notes: http://cs231n.github.io/
- youtube: https://www.youtube.com/watch?v=NfnWJUyUJYU&feature=youtu.be
- mirror: http://pan.baidu.com/s/1pKsTivp
- mirror: http://pan.baidu.com/s/1c2wR8dy
- assignment 1: http://cs231n.github.io/assignments2016/assignment1/
- assignment 2: http://cs231n.github.io/assignments2016/assignment2/
- assignment 3: http://cs231n.github.io/assignments2016/assignment3/
ITP-NYU - Spring 2016
- Video lectures and course notes: http://ml4a.github.io/classes/itp-S16/
Deep Learning for Computer Vision Barcelona: Summer seminar UPC TelecomBCN (July 4-8, 2016)
- intro: This course will cover the basic principles and applications of deep learning to computer vision problems, such as image classification, object detection or text captioning.
- homepage(slides+videos): http://imatge-upc.github.io/telecombcn-2016-dlcv/
- homepage: https://imatge.upc.edu/web/teaching/deep-learning-computer-vision
- youtube: https://www.youtube.com/user/imatgeupc/videos?shelf_id=0&sort=dd&view=0
DLCV - Deep Learning for Computer Vision
Natural Language Processing
CS224n: Natural Language Processing with Deep Learning
- intro: This course is a merger of Stanford’s previous cs224n course and cs224d
- homepage: http://web.stanford.edu/class/cs224n/
Course notes for CS224N Winter17
https://github.com/stanfordnlp/cs224n-winter17-notes
Stanford CS224d: Deep Learning for Natural Language Processing
- homepage: http://cs224d.stanford.edu/
- syllabus: http://cs224d.stanford.edu/syllabus.html
- lecture notes: https://cs224d.stanford.edu/lecture_notes/
Code for Stanford CS224D: deep learning for natural language understanding
CMU CS 11-747, Fall 2017: Neural Networks for NLP
- intro: by Graham Neubig
- course page: http://phontron.com/class/nn4nlp2017/
- github: https://github.com/neubig/nn4nlp2017-code
- video: https://www.bilibili.com/video/av14153689/
Deep Learning for NLP - Lecture October 2015
Harvard University: CS287: Natural Language Processing
Deep Learning for Natural Language Processing: 2016-2017
- intro: Oxford Deep NLP 2017 course
- homepage: http://www.cs.ox.ac.uk/teaching/courses/2016-2017/dl/
- github: https://github.com/oxford-cs-deepnlp-2017/lectures
- youtube: https://www.youtube.com/playlist?list=PL613dYIGMXoZBtZhbyiBqb0QtgK6oJbpm
- mirror: https://pan.baidu.com/s/1dFvGHUh#list/path=%2F
- mirror: https://pan.baidu.com/s/1c2tcC96
GPU Programming
Course on CUDA Programming on NVIDIA GPUs, July 27–31, 2015
An Introduction to GPU Programming using Theano
- youtube: https://www.youtube.com/watch?v=eVd2TqEkVp0
- video: http://pan.baidu.com/s/1c1i6LtI#path=%252F
GPU Programming
- homepage: http://courses.cms.caltech.edu/cs179/
Parallel Programming
Intro to Parallel Programming Using CUDA to Harness the Power of GPUs (Udacity)
https://www.udacity.com/course/intro-to-parallel-programming–cs344
Fundamentals of Accelerated Computing with CUDA C/C++
- intro: Learn to use CUDA C/C++ tools and techniques to accelerate CPU-only applications to run on massively parallel GPUs.
- homepage: https://courses.nvidia.com/courses/course-v1:DLI+C-AC-01+V1/about
Workshops
Deep Learning: Theory, Algorithms, and Applications
- homepage: http://doc.ml.tu-berlin.de/dlworkshop2017/
- video: https://www.youtube.com/playlist?list=PLJOzdkh8T5kqCNV_v1w2tapvtJDZYiohW
- mirror: https://www.bilibili.com/video/av15565354/
Resources
Open Source Deep Learning Curriculum
http://www.deeplearningweekly.com/pages/open_source_deep_learning_curriculum