Fun With Deep Learning
Painting
Artist Agent: A Reinforcement Learning Approach to Automatic Stroke Generation in Oriental Ink Painting
- intro: ICML 2012
- arxiv: https://arxiv.org/abs/1206.4634
Neural Art
A Neural Algorithm of Artistic Style
- arxiv: http://arxiv.org/abs/1508.06576
- gitxiv: http://gitxiv.com/posts/jG46ukGod8R7Rdtud/a-neural-algorithm-of-artistic-style
- github: https://github.com/kaishengtai/neuralart
- github: https://github.com/jcjohnson/neural-style
- github: https://github.com/andersbll/neural_artistic_style
- ipn: http://nbviewer.ipython.org/github/Lasagne/Recipes/blob/master/examples/styletransfer/Art%20Style%20Transfer.ipynb
- github: https://github.com/mbartoli/neural-animation
- github: https://github.com/memisevic/artify
- github: https://github.com/mattya/chainer-gogh
- github(TensorFlow): https://github.com/anishathalye/neural-style
- github: https://github.com/woodrush/neural-art-tf
- github: https://github.com/dmlc/mxnet/tree/master/example/neural-style
- demo: http://deepart.io/
- github: https://github.com/Teaonly/easyStyle
- github: https://github.com/ckmarkoh/neuralart_tensorflow
- github: https://github.com/fzliu/style-transfer
- github: https://github.com/titu1994/Neural-Style-Transfer
- github: https://github.com/saikatbsk/Vincent-AI-Artist
- github: https://github.com/zhaw/neural_style
Image Style Transfer Using Convolutional Neural Networks
Artificial Startup Style: Neural art about startup fashion
From Pixels to Paragraphs: How artistic experiments with deep learning guard us from hype
Experiments with style transfer
Style Transfer for Headshot Portraits (SIGGRAPH 2014)
Teaching recurrent Neural Networks about Monet
- blog: http://blog.manugarri.com/teaching-recurrent-neural-networks-about-monet/
- github: https://github.com/manugarri/keras_monet
Content Aware Neural Style Transfer
Combining Markov Random Fields and Convolutional Neural Networks for Image Synthesis
Stylenet: Neural Network with Style Synthesis
Ostagram
- intro: This program presents web-service for algorithm combining the content of one image with the style of another image using convolutional neural networks
- github: https://github.com/SergeyMorugin/ostagram
Exploring the Neural Algorithm of Artistic Style
- intro: A short class project report
- arxiv: http://arxiv.org/abs/1602.07188
Perceptual Losses for Real-Time Style Transfer and Super-Resolution
- intro: Justin Johnson, Alexandre Alahi, Li Fei-Fei. ECCV 2016
- arxiv: http://arxiv.org/abs/1603.08155
- github: https://github.com/jcjohnson/fast-neural-style
- github: https://github.com/yusuketomoto/chainer-fast-neuralstyle
- github: https://github.com/awentzonline/keras-rtst
- github(Keras): https://github.com/titu1994/Fast-Neural-Style
- gtihub(Tensorflow): [https://github.com/junrushao1994/fast-neural-style.tf] (https://github.com/junrushao1994/fast-neural-style.tf)
- github(PyTorch): https://github.com/bengxy/FastNeuralStyle
Image transformation networks with fancy loss functions
- intro: Fast neural style in tensorflow based on http://arxiv.org/abs/1603.08155
- blog: http://olavnymoen.com/2016/07/07/image-transformation-network
- github: https://github.com/OlavHN/fast-neural-style
Improving the Neural Algorithm of Artistic Style
CubistMirror: an openframeworks app which repeatedly applies real-time style transfer on a webcam
Transfer Style But Not Color
- blog: http://blog.deepart.io/2016/06/04/color-independent-style-transfer/
- github: https://github.com/pavelgonchar/color-independent-style-transfer
neural-art-mini: Lightweight version of mxnet neural art implementation
- intro: Lightweight version of mxnet neural art implementation using ~4.8M SqueezeNet model. Compressed model is less than 500KB
- github: https://github.com/pavelgonchar/neural-art-mini
Preserving Color in Neural Artistic Style Transfer
End to End Neural Art with Generative Models
- blog: http://dmlc.ml/mxnet/2016/06/20/end-to-end-neural-style.html
- github: https://github.com/dmlc/mxnet/tree/master/example/neural-style
Neural Style Explained
Texture Networks: Feed-forward Synthesis of Textures and Stylized Images
- intro: IMCL 2016
- arxiv: http://arxiv.org/abs/1603.03417
- github: https://github.com/DmitryUlyanov/texture_nets
- notes: https://blog.acolyer.org/2016/09/23/texture-networks-feed-forward-synthesis-of-textures-and-stylized-images/
- github: https://github.com/tgyg-jegli/tf_texture_net
Learning Typographic Style
Instance Normalization: The Missing Ingredient for Fast Stylization
Painting style transfer for head portraits using convolutional neural networks
- paper: http://dl.acm.org/citation.cfm?id=2925968
- sci-hub: http://dl.acm.org.sci-hub.cc/citation.cfm?doid=2897824.2925968
Style-Transfer via Texture-Synthesis
neural-style-tf: TensorFlow implementation of Neural Style
Deep Convolutional Networks as Models of Generalization and Blending Within Visual Creativity
- intro: In Proceedings of the 7th International Conference on Computational Creativity. Palo Alto: Association for the Advancement of Artificial Intelligence (AAAI) Press (2016)
- arxiv: https://arxiv.org/abs/1610.02478
A Learned Representation For Artistic Style
- intro: Google Brain
- arxiv: https://arxiv.org/abs/1610.07629
- blog: https://research.googleblog.com/2016/10/supercharging-style-transfer.html
- github: https://github.com/tensorflow/magenta/tree/master/magenta/models/image_stylization
- github(Tensorflow): https://github.com/Heumi/Fast_Multi_Style_Transfer-tf
How to Fake It As an Artist with Docker, AWS and Deep Learning
Multistyle Pastiche Generator
Fast Style Transfer in TensorFlow
- intro: Video Stylization, Image Stylization
- github: https://github.com/lengstrom/fast-style-transfer
Neural Style Transfer For Chinese Fonts
Neural Style Representations and the Large-Scale Classification of Artistic Style
Controlling Perceptual Factors in Neural Style Transfer
- intro: University of Tubingen & Adobe Research
- arxiv: https://arxiv.org/abs/1611.07865
Awesome Typography: Statistics-Based Text Effects Transfer
Fast Patch-based Style Transfer of Arbitrary Style
Demystifying Neural Style Transfer
- intro: IJCAI 2017
- arxiv: https://arxiv.org/abs/1701.01036
- github: https://github.com/lyttonhao/Neural-Style-MMD
Son of Zorn’s Lemma: Targeted Style Transfer Using Instance-aware Semantic Segmentation
Bringing Impressionism to Life with Neural Style Transfer in Come Swim
- intro: a case study of how Neural Style Transfer can be used in a movie production context
- keywords: Kristen Stewart !
- arxiv: https://arxiv.org/abs/1701.04928
Pytorch tutorials for Neural Style transfert
Stable and Controllable Neural Texture Synthesis and Style Transfer Using Histogram Losses
Arbitrary Style Transfer In Real-Time With Adaptive Instance Normalization
- intro: ICCV 2017. Cornell University
- paper: https://openreview.net/pdf?id=B1fUVMzKg
- github(Torch): https://github.com/xunhuang1995/AdaIN-style
- github(TensorFlow): https://github.com/elleryqueenhomels/arbitrary_style_transfer
Picking an optimizer for Style Transfer
- blog: https://medium.com/slavv/picking-an-optimizer-for-style-transfer-86e7b8cba84b#.cgv2oreaq
- github: https://github.com/slavivanov/Style-Tranfer
Multi-style Generative Network for Real-time Transfer
https://arxiv.org/abs/1703.06953
Deep Photo Style Transfer
- arxiv: https://arxiv.org/abs/1703.07511
- github(Torch): https://github.com/luanfujun/deep-photo-styletransfer
- github(Docker): https://github.com/martinbenson/deep-photo-styletransfer
Lightweight Neural Style on Pytorch
https://github.com/lizeng614/SqueezeNet-Neural-Style-Pytorch
StyleBank: An Explicit Representation for Neural Image Style Transfer
- intro: CVPR 2017
- arxiv: https://arxiv.org/abs/1703.09210
How to Make an Image More Memorable? A Deep Style Transfer Approach
- intro: ACM ICMR 2017
- arxiv: https://arxiv.org/abs/1704.01745
Visual Attribute Transfer through Deep Image Analogy
- intro: SIGGRAPH 2017
- keywords: Deep Image Analogy
- arxiv: https://arxiv.org/abs/1705.01088
- github: https://github.com/msracver/Deep-Image-Analogy
Characterizing and Improving Stability in Neural Style Transfer
https://arxiv.org/abs/1705.02092
Towards Metamerism via Foveated Style Transfer
https://arxiv.org/abs/1705.10041
Style Transfer for Sketches with Enhanced Residual U-net and Auxiliary Classifier GAN
https://arxiv.org/abs/1706.03319
Meta Networks for Neural Style Transfer
Neural Color Transfer between Images
- intro: Hong Kong University of Science and Technology & Microsoft Research
- arxiv: https://arxiv.org/abs/1710.00756
Improved Style Transfer by Respecting Inter-layer Correlations
https://arxiv.org/abs/1801.01933
Face Destylization
https://arxiv.org/abs/1802.01237
Unsupervised Typography Transfer
https://arxiv.org/abs/1802.02595
Stereoscopic Neural Style Transfer
- intro: CVPR 2018
- arxiv: https://arxiv.org/abs/1802.10591
Arbitrary Style Transfer with Deep Feature Reshuffle
https://arxiv.org/abs/1805.04103
Neural Art On Audio
MSc AI Project on generative deep networks and neural style transfer for audio
- github: https://github.com/Fr-d-rik/generative_audio
- project report: https://github.com/Fr-d-rik/generative_audio/blob/master/docs/project_report.pdf
Neural Song Style
- intro: Audio style transfer AI
- github: https://github.com/rupeshs/neuralsongstyle
Time Domain Neural Audio Style Transfer
- intro: NIPS 2017
- arxiv: https://arxiv.org/abs/1711.11160
- github: https://github.com//pkmital/time-domain-neural-audio-style-transfer
Neural Art On Video
neural-style-video
- blog: http://larseidnes.com/2015/12/18/painting-videos-with-neural-networks/
- github: https://github.com/larspars/neural-style-video
Instructions for making a Neural-Style movie
Artistic style transfer for videos
Artistic style transfer for videos and spherical images
https://arxiv.org/abs/1708.04538
How Deep Learning Can Paint Videos in the Style of Art’s Great Masters
DeepMovie: Using Optical Flow and Deep Neural Networks to Stylize Movies
Coherent Online Video Style Transfer
https://arxiv.org/abs/1703.09211
Laplacian-Steered Neural Style Transfer
- intro: ACM Multimedia Conference (MM) 2017
- arxiv: https://arxiv.org/abs/1707.01253
Real-Time Neural Style Transfer for Videos
- intro: Tsinghua University & Tencent AI Lab
- paper: http://openaccess.thecvf.com/content_cvpr_2017/papers/Huang_Real-Time_Neural_Style_CVPR_2017_paper.pdf
Multi-Content GAN for Few-Shot Font Style Transfer
https://arxiv.org/abs/1712.00516
Neural Doodle
Semantic Style Transfer and Turning Two-Bit Doodles into Fine Artworks
- paper: http://nucl.ai/semantic-style-transfer.pdf
- reddit: https://www.reddit.com/r/MachineLearning/comments/48zstj/my_wip_implementation_of_neural_image_analogies/
- github: https://github.com/alexjc/neural-doodle
Neural Doodle
Faster neural doodle
Feed-forward neural doodle
- blog: http://dmitryulyanov.github.io/feed-forward-neural-doodle/
- github: https://github.com/DmitryUlyanov/online-neural-doodle
- demo: http://likemo.net/
neural image analogies: Generate image analogies using neural matching and blending
Neural doodle with Keras
https://github.com/fchollet/keras/blob/master/examples/neural_doodle.py
Deep Dreams
deepdream
cnn-vis: Use CNNs to generate images
bat-country: A lightweight, extendible, easy to use Python package for deep dreaming and image generation with Caffe and CNNs
DeepDreaming with TensorFlow
deepdraw
Understanding Deep Dreams
- blog: http://www.alanzucconi.com/2015/07/06/live-your-deepdream-how-to-recreate-the-inceptionism-effect/
Generating Deep Dreams
Audio Deepdream: Optimizing Raw Audio With Convolutional Networks
- intro: Google Brain
- paper: https://wp.nyu.edu/ismir2016/wp-content/uploads/sites/2294/2016/08/ardila-audio.pdf
- examples: https://drive.google.com/drive/folders/0B7NUtSSG_AgqZWF1ajdhSjhEMlk
Emoji
Brewing EmojiNet
- blog: http://engineering.curalate.com/2016/01/20/emojinet.html
- website: https://emojini.curalate.com/
Image2Emoji: Zero-shot Emoji Prediction for Visual Media
Teaching Robots to Feel: Emoji & Deep Learning 👾 💭 💕
- blog: http://getdango.com/emoji-and-deep-learning.html
- app: https://play.google.com/store/apps/details?id=co.dango.emoji.gif
Text input with relevant emoji sorted with deeplearning
- homepage: http://codepen.io/Idlework/pen/xOgGqM
Sketch
Sketch-a-Net that Beats Humans
- project page: http://www.eecs.qmul.ac.uk/~tmh/downloads.html
- arxiv: http://arxiv.org/abs/1501.07873
- paper: http://www.eecs.qmul.ac.uk/~tmh/papers/yu2015sketchanet.pdf
- code: http://www.eecs.qmul.ac.uk/~tmh/downloads/SketchANet_Code.zip
How Do Humans Sketch Objects?
- project page: http://cybertron.cg.tu-berlin.de/eitz/projects/classifysketch/
- paper: http://cybertron.cg.tu-berlin.de/eitz/pdf/2012_siggraph_classifysketch.pdf
- github: https://github.com/Zebreu/SketchingAI
- gitxiv: http://gitxiv.com/posts/ZBCxEc9g3Fg5xCQ6n/sketchingai
Learning to Simplify: Fully Convolutional Networks for Rough Sketch Cleanup (SIGGRAPH 2016)
- homepage: http://hi.cs.waseda.ac.jp/~esimo/en/research/sketch/
- paper: http://hi.cs.waseda.ac.jp/~esimo/publications/SimoSerraSIGGRAPH2016.pdf
Convolutional Sketch Inversion
- arxiv: http://arxiv.org/abs/1606.03073
- review: https://www.technologyreview.com/s/601684/machine-vision-algorithm-learns-to-transform-hand-drawn-sketches-into-photorealistic-images/
- review: https://techcrunch.com/2016/07/24/researchers-use-neural-networks-to-turn-face-sketches-into-photos/
Sketch Me That Shoe (CVPR 2016)
- project page: http://www.eecs.qmul.ac.uk/~qian/Project_cvpr16.html
- paper: http://www.eecs.qmul.ac.uk/~qian/SketchMeThatShoe.pdf
- github: https://github.com/seuliufeng/DeepSBIR
Mastering Sketching: Adversarial Augmentation for Structured Prediction
- keywords: Sketch Simplification
- project page: http://hi.cs.waseda.ac.jp/~esimo/en/research/sketch_master/
- arxiv: https://arxiv.org/abs/1703.08966
- github: https://github.com/bobbens/sketch_simplification
SketchyGAN: Towards Diverse and Realistic Sketch to Image Synthesis
- intro: Georgia Institute of Technology
- arxiv: https://arxiv.org/abs/1801.02753
Image Stylization
Automatic Portrait Segmentation for Image Stylization
- intro: The Chinese University of Hong Kong & Adobe Research
- project page(data+code): http://xiaoyongshen.me/webpage_portrait/index.html
- paper: http://www.cse.cuhk.edu.hk/leojia/papers/portrait_eg16.pdf
- github(Tensorflow): https://github.com/PetroWu/AutoPortraitMatting
Transfiguring Portraits
Stylize Aesthetic QR Code
- intro: Zhengzhou University & Zhejiang University
- arxiv: https://arxiv.org/abs/1803.01146
Image Colorization
Deep Colorization
Learning Large-Scale Automatic Image Colorization
Learning Representations for Automatic Colorization
- homepage: http://people.cs.uchicago.edu/~larsson/colorization/
- arxiv: http://arxiv.org/abs/1603.06668
- github: https://github.com/gustavla/autocolorize
Colorful Image Colorization
- intro: ECCV 2016
- project page: http://richzhang.github.io/colorization/
- arxiv: http://arxiv.org/abs/1603.08511
- github: https://github.com/richzhang/colorization
- demo: http://demos.algorithmia.com/colorize-photos/
- github: https://github.com/tdeboissiere/DeepLearningImplementations/tree/master/Colorful github(Tensorflow): https://github.com/nilboy/colorization-tf
Colorising Black & White Photos using Deep Learning
https://hackernoon.com/colorising-black-white-photos-using-deep-learning-4da22a05f531
Automatic Colorization (Tensorflow + VGG)
colornet: Neural Network to colorize grayscale images
https://github.com/pavelgonchar/colornet
Let there be Color!: Joint End-to-end Learning of Global and Local Image Priors for Automatic Image Colorization with Simultaneous Classification (SIGGRAPH 2016)
- homepage: http://hi.cs.waseda.ac.jp/~iizuka/projects/colorization/
- paper: http://hi.cs.waseda.ac.jp/~iizuka/projects/colorization/data/colorization_sig2016.pdf
- github(Torch7): https://github.com/satoshiiizuka/siggraph2016_colorization
Convolutional autoencoder to colorize greyscale images
Image-Color: A deep learning approach to colorizing images
Creating an artificial artist: Color your photos using Neural Networks
Paints Chainer: line drawing colorization using chainer
Unsupervised Diverse Colorization via Generative Adversarial Networks
(DE)^2 CO: Deep Depth Colorization
https://arxiv.org/abs/1703.10881
A Neural Representation of Sketch Drawings
- intro: Google Brain
- arxiv: https://arxiv.org/abs/1704.03477
Real-Time User-Guided Image Colorization with Learned Deep Priors
- intro: SIGGRAPH 2017
- project page: https://richzhang.github.io/ideepcolor/
- arxiv: https://arxiv.org/abs/1705.02999
- github(official, Caffe): https://github.com/junyanz/interactive-deep-colorization
PixColor: Pixel Recursive Colorization
- intro: Google Research
- arxiv: https://arxiv.org/abs/1705.07208
cGAN-based Manga Colorization Using a Single Training Image
- intro: University of Tokyo
- arxiv: https://arxiv.org/abs/1706.06918
Interactive Deep Colorization With Simultaneous Global and Local Inputs
https://arxiv.org/abs/1801.09083
Image Colorization with Generative Adversarial Networks
https://arxiv.org/abs/1803.05400
Learning to Color from Language
- intro: Allen Institute of Artificial Intelligence & University of Massachusetts
- arxiv: https://arxiv.org/abs/1804.06026
Sounds
Visually Indicated Sounds
- project page: http://vis.csail.mit.edu/
- arxiv: http://arxiv.org/abs/1512.08512
Music
GRUV: Algorithmic Music Generation using Recurrent Neural Networks
DeepHear - Composing and harmonizing music with neural networks
- website: http://web.mit.edu/felixsun/www/neural-music.html
- github: https://github.com/fephsun/neuralnetmusic
Using AutoHarp and a Character-Based RNN to Create MIDI Drum Loops
Musical Audio Synthesis Using Autoencoding Neural Nets
- paper: http://www.cs.dartmouth.edu/~sarroff/papers/sarroff2014a.pdf
- github: https://github.com/woodshop/deepAutoController/tree/icmc_smc_2014
- video: https://vimeo.com/121827215
sound-rnn: Generating sound using recurrent neural networks
- github: https://github.com/johnglover/sound-rnn
- blog: http://www.johnglover.net/blog/generating-sound-with-rnns.html
Using LSTM Recurrent Neural Networks for Music Generation (Project for AI Prac Fall 2015 at Cornell)
- youtube: https://www.youtube.com/watch?v=aSr8_QQYpYM
- video: http://video.weibo.com/show?fid=1034:4be01d679bb1a68a634fe0f589caa779
Visually Indicated Sounds (MIT. 2015)
Training a Recurrent Neural Network to Compose Music
LSTM Realbook
- blog: https://keunwoochoi.wordpress.com/2016/02/19/lstm-realbook/
- github: https://github.com/keunwoochoi/lstm_real_book
LSTMetallica: Generation drum tracks by learning the drum tracks of 60 Metallica songs
deepjazz: Deep learning driven jazz generation using Keras & Theano!
- homepage: https://jisungk.github.io/deepjazz/
- github:https://github.com/jisungk/deepjazz
Magenta: Music and Art Generation with Machine Intelligence
- homepage: http://magenta.tensorflow.org/
- github: https://github.com/tensorflow/magenta
Music Transcription with Convolutional Neural Networks
- blog: https://www.lunaverus.com/cnn
- download: https://www.lunaverus.com/download
Long Short-Term Memory Recurrent Neural Network Architectures for Generating Music and Japanese Lyrics
BachBot: Use deep learning to generate and harmonize music in the style of Bach
- intro: BachBot is a research project utilizing long short term memory (LSTMs) to generate Bach compositions
- homepage: http://bachbot.com/
- github: https://github.com/feynmanliang/bachbot
Generate Music in TensorFlow
- youtube: https://www.youtube.com/watch?v=ZE7qWXX05T0
- github: https://github.com/llSourcell/Music_Generator_Demo
Generate new lyrics in the style of any artist using LSTMs and TensorFlow
sound-GAN: Generative Adversial Network for music composition
Analyzing Six Deep Learning Tools for Music Generation
- intro: Magenta / DeepJazz / BachBot / FlowMachines / WaveNet / GRUV
- blog: http://www.asimovinstitute.org/notes-vs-waves/
WIMP2: Creating Music with AI: Highlights of Current Research
Song From PI: A Musically Plausible Network for Pop Music Generation
- paper: http://openreview.net/pdf?id=ByBwSPcex
- project page: http://www.cs.toronto.edu/songfrompi/
Grammar Argumented LSTM Neural Networks with Note-Level Encoding for Music Composition
用TensorFlow生成周杰伦歌词
- blog: http://leix.me/2016/11/28/tensorflow-lyrics-generation/
- github: https://github.com/leido/char-rnn-cn
Hip-Hop - Generating lyrics with RNNs
Metis Final Project: Music Composition with LSTMs
http://blog.naoya.io/metis-final-project-music-composition-with-lstms/
Neural Translation of Musical Style
- blog: http://imanmalik.com/cs/2017/06/05/neural-style.html
- github: https://github.com/imalikshake/StyleNet
Poetry
NeuralSnap: Generates poetry from images using convolutional and recurrent neural networks
Generating Chinese Classical Poems with RNN Encoder-Decoder
Chinese Poetry Generation with Planning based Neural Network
- intro: COLING 2016. University of Science and Technology of China & Baidu
- arxiv: https://arxiv.org/abs/1610.09889
- blog: http://freecoder.me/archives/213.html
Weiqi (Go)
Teaching Deep Convolutional Neural Networks to Play Go
Move Evaluation in Go Using Deep Convolutional Neural Networks(Google DeepMind, Google Brain)
Training Deep Convolutional Neural Networks to Play Go
Computer Go Research - The Challenges Ahead (Martin Müller. IEEE CIG 2015)
GoCNN: Using CNN for Go (Weiqi/Baduk) board evaluation with tensorflow
DarkGo: Go in Darknet
BetaGo: Go bots for the people
- homepage: http://maxpumperla.github.io/betago/
- github: https://github.com/maxpumperla/betago
Deep Learning and the Game of Go
- book: https://www.manning.com/books/deep-learning-and-the-game-of-go
- github: https://github.com//maxpumperla/deep_learning_and_the_game_of_go
DarkForest
Better Computer Go Player with Neural Network and Long-term Prediction (Facebook AI Research)
- arxiv: http://arxiv.org/abs/1511.06410
- github: https://github.com/facebookresearch/darkforestGo
- MIT tech review: http://www.technologyreview.com/view/544181/how-facebooks-ai-researchers-built-a-game-changing-go-engine/
AlphaGo
Mastering the game of Go with deep neural networks and tree search
- intro: AlphaGo. Google DeepMind
- homepage: http://www.deepmind.com/alpha-go.html
- paper: https://storage.googleapis.com/deepmind-data/assets/papers/deepmind-mastering-go.pdf
- naturep page: http://www.nature.com/nature/journal/v529/n7587/full/nature16961.html
- paper: https://gogameguru.com/i/2016/03/deepmind-mastering-go.pdf
- slides: http://www.bioinfo.org.cn/~casp/temp/alphago_slides.pdf
- blog: http://www.furidamu.org/blog/2016/01/26/mastering-the-game-of-go-with-deep-neural-networks-and-tree-search/
- blog(“AlphaGo: From Intuitive Learning to Holistic Knowledge”): https://caminao.wordpress.com/2016/02/01/alphago/
- github: https://github.com/Rochester-NRT/AlphaGo
AlphaGo Teach
- intro: Let the AlphaGo Teaching Tool help you find new and creative ways of playing Go
- homepage: https://alphagoteach.deepmind.com/
AlphaGo的分析
- intro: by 田渊栋
- blog: http://zhuanlan.zhihu.com/yuandong/20607684
How Alphago Works
- slides: http://www.slideshare.net/ShaneSeungwhanMoon/how-alphago-works
- slides: http://pan.baidu.com/s/1qXwagGW
AlphaGo in Depth
- intro: by Mark Chang
- slides: http://www.slideshare.net/ckmarkohchang/alphago-in-depth?qid=283ab3bc-7d04-4e14-a205-b0b671ca4099
- mirror: https://pan.baidu.com/s/1i5JNeRj
Leela
- intro: Leela is a strong Go playing program combining advances in Go programming and further original research into a small, easy to use graphical interface.
- homepage: https://sjeng.org/leela.html
Mastering the game of Go without human knowledge
- nature page: http://www.nature.com/nature/journal/v550/n7676/full/nature24270.html
- paper: https://deepmind.com/documents/119/agz_unformatted_nature.pdf
- notes: https://blog.acolyer.org/2017/11/17/mastering-the-game-of-go-without-human-knowledge/
Computer Go & AlphaGo Zero
- youtube: https://www.youtube.com/watch?v=6fKG4wJ7uBk
- mirror: https://www.bilibili.com/video/av16428694/
- slides: https://drive.google.com/file/d/1rmUyIitEmAtMUKdKEnlHRfmXtpyoxxey/view
AlphaZero: Mastering Games without Human Knowledge - NIPS 2017
- intro: Keynote by David Silver on AlphaGo, AlphaGo Zero and AlphaZero, at the 2017 NIPS Deep Reinforcement Learning Symposium, 6 Dec, Long Beach, CA
- youtube: https://www.youtube.com/watch?v=A3ekFcZ3KNw
- mirror: https://www.bilibili.com/video/av17210816/
The future is here – AlphaZero learns chess
https://en.chessbase.com/post/the-future-is-here-alphazero-learns-chess
**AlphaGo Zero Cheat Sheet
https://applied-data.science/static/main/res/alpha_go_zero_cheat_sheet.png
Chess
Giraffe: Using Deep Reinforcement Learning to Play Chess
- intro: MSc thesis
- arxiv: http://arxiv.org/abs/1509.01549
Spawkfish: neural network based chess engine
- homepage: http://spawk.fish/
Chess position evaluation with convolutional neural network in Julia
Deep Learning for … Chess
- blog: http://blog.yhat.com/posts/deep-learning-chess.html
- github: https://github.com/erikbern/deep-pink
DeepChess: End-to-End Deep Neural Network for Automatic Learning in Chess
- intro: Winner of Best Paper Award in ICANN 2016
- arxiv: https://arxiv.org/abs/1711.09667
- paper: http://www.cs.tau.ac.il/~wolf/papers/deepchess.pdf
- github: https://github.com/mr-press/DeepChess
Mastering Chess and Shogi by Self-Play with a General Reinforcement Learning Algorithm
- intro: DeepMind
- arxiv: https://arxiv.org/abs/1712.01815
Game
Learning Game of Life with a Convolutional Neural Network
Reinforcement Learning using Tensor Flow: A deep Q learning demonstration using Google Tensorflow
Poker-CNN: A Pattern Learning Strategy for Making Draws and Bets in Poker Games Using Convolutional Networks
- arxiv: http://arxiv.org/abs/1509.06731
- paper: http://colinraffel.com/publications/aaai2016poker.pdf
- github: https://github.com/moscow25/deep_draw
- slides: https://drive.google.com/file/d/0B5eOIUHA0khiMjN1YnEtZHMwams/view
- slides: http://pan.baidu.com/s/1nu5zpZ7
TorchCraft: a Library for Machine Learning Research on Real-Time Strategy Games
- intro: Connecting Torch to StarCraft
- arxiv: https://arxiv.org/abs/1611.00625
- github: https://github.com/TorchCraft/TorchCraft
BlizzCon 2016 DeepMind and StarCraft II Deep Learning Panel Transcript
- part 1: http://starcraft.blizzplanet.com/blog/comments/blizzcon-2016-deepmind-and-starcraft-ii-deep-learning-panel-transcript
- part 2: http://starcraft.blizzplanet.com/blog/comments/blizzcon-2016-deepmind-and-starcraft-ii-deep-learning-panel-transcript/2
DeepStack: Expert-Level Artificial Intelligence in No-Limit Poker
Gym StarCraft: StarCraft environment for OpenAI Gym, based on Facebook’s TorchCraft
- intro: Gym StarCraft is an environment bundle for OpenAI Gym. It is based on Facebook’s TorchCraft, which is a bridge between Torch and StarCraft for AI research.
- github: https://github.com/deepcraft/gym-starcraft
Multiagent Bidirectionally-Coordinated Nets for Learning to Play StarCraft Combat Games
https://arxiv.org/abs/1703.10069
Learning Macromanagement in StarCraft from Replays using Deep Learning
- intro: CIG 2017. IT University of Copenhagen
- arxiv: https://arxiv.org/abs/1707.03743
Multi-platform Version of StarCraft: Brood War in a Docker Container: Technical Report
- intro: Czech Technical University in Prague
- arxiv: https://arxiv.org/abs/1801.02193
- gihtub: https://github.com/Games-and-Simulations/sc-docker
DeepLeague
DeepLeague: leveraging computer vision and deep learning on the League of Legends mini map + giving away a dataset of over 100,000 labeled images to further esports analytics research
DeepLeague (Part 2): The Technical Details
- blog: https://medium.com/@farzatv/deepleague-part-2-the-technical-details-374439e7e09a
- github: https://github.com/farzaa/DeepLeague
Courses
Learning Machines
http://www.patrickhebron.com/learning-machines/
Learning Bit by Bit
https://itp.nyu.edu/varwiki/Syllabus/LearningBitbyBitS10
MACHINE LEARNING FOR MUSICIANS AND ARTISTS (Course opens January 2016)
https://www.kadenze.com/courses/machine-learning-for-musicians-and-artists/info
Machine learning for artists @ ITP-NYU, Spring 2016
- videos/lectures/course notes: http://ml4a.github.io/classes/itp-S16/
- index: http://ml4a.github.io/index/
- github: https://github.com/ml4a/ml4a.github.io
- notes: http://www.kdnuggets.com/2016/04/machine-learning-artists-video-lectures-notes.html
- blog: https://medium.com/@genekogan/machine-learning-for-artists-e93d20fdb097#.25w95beqb
Machine Learning for Artists @ OpenDot, November 2016
- homepage: http://ml4a.github.io/classes/opendot/
The Neural Aesthetic @ SchoolOfMa, Summer 2016
http://ml4a.github.io/classes/neural-aesthetic/
Blogs
Review of machine / deep learning in an artistic context
https://medium.com/@memoakten/machine-deep-learning-in-an-artistic-context-441f28774bcc#.gegpq99ag
Apprentice Work
https://www.technologyreview.com/s/600762/apprentice-work/
Exploring the Intersection of Art and Machine Intelligence
http://googleresearch.blogspot.jp/2016/02/exploring-intersection-of-art-and.html
Using machine learning to generate music
http://www.datasciencecentral.com/profiles/blogs/using-machine-learning-to-generate-music
art in the age of machine intelligence
https://medium.com/artists-and-machine-intelligence/what-is-ami-ccd936394a83#.hyt4ei9a9
Understanding Aesthetics with Deep Learning
https://devblogs.nvidia.com/parallelforall/understanding-aesthetics-deep-learning/
Go, Marvin Minsky, and the Chasm that AI Hasn’t Yet Crossed
blog: https://medium.com/backchannel/has-deepmind-really-passed-go-adc85e256bec#.inx8nfid0
A Return to Machine Learning
- intro: This post is aimed at artists and other creative people who are interested in a survey of recent developments in machine learning research that intersect with art and culture.
- blog: https://medium.com/@kcimc/a-return-to-machine-learning-2de3728558eb#.bp2b1ax2x
Resources
Music, Art and Machine Intelligence Workshop 2016