Image Retrieval
Papers
Using Very Deep Autoencoders for Content-Based Image Retrieval
- intro: ESANN 2011. Alex Krizhevsky, and Geoffrey E. Hinton
- paper: https://www.cs.toronto.edu/~hinton/absps/esann-deep-final.pdf
- paper: http://www.cs.toronto.edu/~fritz/absps/esann-deep-final.pdf
Learning High-level Image Representation for Image Retrieval via Multi-Task DNN using Clickthrough Data
- arxiv: http://arxiv.org/abs/1312.4740
- paper: http://legacy.openreview.net/document/90fc8dad-ad02-4ddc-ab06-e7b55706869d#90fc8dad-ad02-4ddc-ab06-e7b55706869d
Neural Codes for Image Retrieval
- intro: ECCV 2014
- project page: http://sites.skoltech.ru/compvision/projects/neuralcodes/
- arxiv: http://arxiv.org/abs/1404.1777
- github: https://github.com/arbabenko/Spoc
Efficient On-the-fly Category Retrieval using ConvNets and GPUs
Learning visual similarity for product design with convolutional neural networks
- intro: SIGGRAPH 2015
- paper: http://www.cs.cornell.edu/~kb/publications/SIG15ProductNet.pdf
- paper: http://dl.acm.org.sci-hub.cc/citation.cfm?doid=2809654.2766959
Exploiting Local Features from Deep Networks for Image Retrieval
- intro: CVPR DeepVision Workshop 2015
- arxiv: https://arxiv.org/abs/1504.05133
Visual Search at Pinterest
- intro: in Proceedings of the 21th ACM SIGKDD International Conference on Knowledge and Discovery and Data Mining, 2015
- arxiv: http://arxiv.org/abs/1505.07647
- blog: https://engineering.pinterest.com/blog/introducing-new-way-visually-search-pinterest
Aggregating Deep Convolutional Features for Image Retrieval
- intro: ICCV 2015
- intro: Sum pooing
- arxiv: http://arxiv.org/abs/1510.07493
Particular object retrieval with integral max-pooling of CNN activations
- intro: use max-pooling to aggregate the deep descriptors, R-MAC (regional maximum activation of convolutions)
- arxiv: https://arxiv.org/abs/1511.05879
Group Invariant Deep Representations for Image Instance Retrieval
Where to Buy It: Matching Street Clothing Photos in Online Shops
- intro: ICCV 2015
- hmepage: http://www.tamaraberg.com/street2shop/
- paper: http://www.tamaraberg.com/papers/street2shop.pdf
- paper: http://www.cv-foundation.org/openaccess/content_iccv_2015/html/Kiapour_Where_to_Buy_ICCV_2015_paper.html
Natural Language Object Retrieval
- intro: CVPR 2015
- homepage: http://ronghanghu.com/text_obj_retrieval/
- arxiv: http://arxiv.org/abs/1511.04164
- slides: http://ronghanghu.com/slides/cvpr16_text_obj_retrieval_slides.pdf
- github: https://github.com/ronghanghu/natural-language-object-retrieval
- github: https://github.com/andrewliao11/Natural-Language-Object-Retrieval-tensorflow
Deep Image Retrieval: Learning global representations for image search
- intro: ECCV 2016
- project page: http://www.xrce.xerox.com/Research-Development/Computer-Vision/Learning-Visual-Representations/Deep-Image-Retrieval
- arxiv: https://arxiv.org/abs/1604.01325
- slides: http://www.slideshare.net/xavigiro/deep-image-retrieval-learning-global-representations-for-image-search
End-to-end Learning of Deep Visual Representations for Image Retrieval
- intro: IJCV 2017. Extended version of our ECCV2016 paper “Deep Image Retrieval: Learning global representations for image search”
- project page: http://www.xrce.xerox.com/Research-Development/Computer-Vision/Learning-Visual-Representations/Deep-Image-Retrieval
- arxiv: https://arxiv.org/abs/1610.07940
Bags of Local Convolutional Features for Scalable Instance Search
- intro: ICMR 2016. Best Poster Award at ICMR 2016.
- project page: https://imatge-upc.github.io/retrieval-2016-icmr/
- arxiv: https://arxiv.org/abs/1604.04653
- github: https://github.com/imatge-upc/retrieval-2016-icmr
- slides: http://www.slideshare.net/xavigiro/convolutional-features-for-instance-search
Faster R-CNN Features for Instance Search
- intro: DeepVision Workshop in CVPR 2016
- homepage: http://imatge-upc.github.io/retrieval-2016-deepvision/
- arxiv: http://arxiv.org/abs/1604.08893
- github: https://github.com/imatge-upc/retrieval-2016-deepvision
Where to Focus: Query Adaptive Matching for Instance Retrieval Using Convolutional Feature Maps
- intro: query adaptive matching (QAM), Feature Map Pooling, Overlapped Spatial Pyramid Pooling (OSPP)
- arxiv: https://arxiv.org/abs/1606.06811
Adversarial Training For Sketch Retrieval
Learning Compact Binary Descriptors with Unsupervised Deep Neural Networks
- intro: CVPR 2016. DeepBit
- paper: http://www.cv-foundation.org/openaccess/content_cvpr_2016/papers/Lin_Learning_Compact_Binary_CVPR_2016_paper.pdf
- github: https://github.com/kevinlin311tw/cvpr16-deepbit
Fast Training of Triplet-based Deep Binary Embedding Networks
- intro: CVPR 2016
- arxiv: https://arxiv.org/abs/1603.02844
- paper: http://www.cv-foundation.org/openaccess/content_cvpr_2016/papers/Zhuang_Fast_Training_of_CVPR_2016_paper.pdf
- bitbucket(official): https://bitbucket.org/jingruixiaozhuang/fast-training-of-triplet-based-deep-binary-embedding-networks
Deep Relative Distance Learning: Tell the Difference Between Similar Vehicles
- intro: CVPR 2016
- intro: vehicle re-identification, vehicle retrieval. coupled clusters loss
- paper: http://www.cv-foundation.org/openaccess/content_cvpr_2016/papers/Liu_Deep_Relative_Distance_CVPR_2016_paper.pdf
DeepFashion: Powering Robust Clothes Recognition and Retrieval with Rich Annotations
- intro: CVPR 2016. FashionNet
- project page: http://personal.ie.cuhk.edu.hk/~lz013/projects/DeepFashion.html
- paper: http://www.cv-foundation.org/openaccess/content_cvpr_2016/papers/Liu_DeepFashion_Powering_Robust_CVPR_2016_paper.pdf
CNN Image Retrieval Learns from BoW: Unsupervised Fine-Tuning with Hard Examples
- intro: ECCV 2016
- project page(paper+code+data): http://cmp.felk.cvut.cz/~radenfil/projects/siamac.html
- arxiv: https://arxiv.org/abs/1604.02426
- paper: http://cmp.felk.cvut.cz/~radenfil/publications/Radenovic-ECCV16.pdf
- code(Matlab): http://ptak.felk.cvut.cz/personal/radenfil/siamac/siaMAC_code.tar.gz
PicHunt: Social Media Image Retrieval for Improved Law Enforcement
SIFT Meets CNN: A Decade Survey of Instance Retrieval
The Sketchy Database: Learning to Retrieve Badly Drawn Bunnies
- project page: http://sketchy.eye.gatech.edu/
- paper: http://www.cc.gatech.edu/~hays/tmp/sketchy-database.pdf
- github: https://github.com/janesjanes/sketchy
What Is the Best Practice for CNNs Applied to Visual Instance Retrieval?
Image Retrieval with Deep Local Features and Attention-based Keypoints
Internet-Based Image Retrieval Using End-to-End Trained Deep Distributions
Compression of Deep Neural Networks for Image Instance Retrieval
- intro: DCC 2017
- arxiv: https://arxiv.org/abs/1701.04923
Effective Multi-Query Expansions: Collaborative Deep Networks for Robust Landmark Retrieval
Siamese Network of Deep Fisher-Vector Descriptors for Image Retrieval
Deep Geometric Retrieval
Context Aware Query Image Representation for Particular Object Retrieval
https://www.arxiv.org/abs/1703.01226
An End-to-End Approach to Natural Language Object Retrieval via Context-Aware Deep Reinforcement Learning
https://arxiv.org/abs/1703.07579
AMC: Attention guided Multi-modal Correlation Learning for Image Search
- intro: CVPR 2017
- arxiv: https://arxiv.org/abs/1704.00763
- github: https://github.com/kanchen-usc/amc_att
Video2Shop: Exactly Matching Clothes in Videos to Online Shopping Images
- intro: CVPR 2017
- keywrods: AsymNet
- arxiv: https://arxiv.org/abs/1804.05287
Deep image representations using caption generators
- intro: ICME 2017
- arxiv: https://arxiv.org/abs/1705.09142
Visual Search at eBay
- intro: 23rd SIGKDD Conference on Knowledge Discovery and Data Mining (KDD), 2017
- arxiv: https://arxiv.org/abs/1706.03154
Sampling Matters in Deep Embedding Learning
- intro: UT Austin & A9/Amazon
- keywords: distance weighted sampling
- arxiv: https://arxiv.org/abs/1706.07567
One-Shot Fine-Grained Instance Retrieval
- intro: ACM MM 2017
- arxiv: https://arxiv.org/abs/1707.00811
Selective Deep Convolutional Features for Image Retrieval
- intro: ACM MM 2017
- arxiv: https://arxiv.org/abs/1707.00809
Class-Weighted Convolutional Features for Visual Instance Search
- intro: BMVC 2017. Universitat Politecnica de Catalunya Barcelona & CSIRO
- project page: http://imatge-upc.github.io/retrieval-2017-cam/
- arxiv: https://arxiv.org/abs/1707.02581
- github: https://github.com/imatge-upc/retrieval-2017-cam
Learning a Repression Network for Precise Vehicle Search
https://arxiv.org/abs/1708.02386
SUBIC: A supervised, structured binary code for image search
- intro: ICCV 2017 (Spotlight). Technicolor & INRIA Rennes & Amazon
- arxiv: https://arxiv.org/abs/1708.02932
Pruning Convolutional Neural Networks for Image Instance Retrieval
https://arxiv.org/abs/1707.05455
Image2song: Song Retrieval via Bridging Image Content and Lyric Words
- intro: ICCV 2017. Chinese Academy of Sciences & Northwestern Polytechnical University
- arxiv: https://arxiv.org/abs/1708.05851
Region-Based Image Retrieval Revisited
- intro: ACM Multimedia 2017 (Oral)
- arxiv: https://arxiv.org/abs/1709.09106
Beyond Part Models: Person Retrieval with Refined Part Pooling
https://arxiv.org/abs/1711.09349
Query-Adaptive R-CNN for Open-Vocabulary Object Detection and Retrieval
https://arxiv.org/abs/1711.09509
Saliency Weighted Convolutional Features for Instance Search
- intro: Dublin City University & Universitat Politecnica de Catalunya
- keywords: local convolutional features (BLCF), human visual attention models (saliency)
- project page: https://imatge-upc.github.io/salbow/
- arxiv: https://arxiv.org/abs/1711.10795
- github: https://arxiv.org/abs/1711.10795
DeepStyle: Multimodal Search Engine for Fashion and Interior Design
https://arxiv.org/abs/1801.03002
From Selective Deep Convolutional Features to Compact Binary Representations for Image Retrieval
https://arxiv.org/abs/1802.02899
Web-Scale Responsive Visual Search at Bing
- intro: Microsoft
- arxiv: https://arxiv.org/abs/1802.04914
Approximate Query Matching for Image Retrieval
https://arxiv.org/abs/1803.05401
Object Captioning and Retrieval with Natural Language
https://arxiv.org/abs/1803.06152
Triplet-Center Loss for Multi-View 3D Object Retrieval
- intro: CVPR 2018
- arxiv: https://arxiv.org/abs/1803.06189
Hashing
Supervised Hashing for Image Retrieval via Image Representation Learning
- intro: AAAI 2014. Sun Yat-Sen University & National University of Singapore
- keywords: CNNH (Convolutional Neural Network Hashing)
- paper: www.aaai.org/ocs/index.php/AAAI/AAAI14/paper/download/8137/8861
- slides: https://pdfs.semanticscholar.org/f633/8f23860f9c4808586bbc7e8907d33836147f.pdf
Simultaneous Feature Learning and Hash Coding with Deep Neural Networks
- intro: CVPR 2015. Sun Yat-Sen University & National University of Singapore
- keywords: NINH (NIN Hashing), DNNH (Deep Neural Network Hashing)
- arxiv: https://arxiv.org/abs/1504.03410
- paper: http://www.cv-foundation.org/openaccess/content_cvpr_2015/papers/Lai_Simultaneous_Feature_Learning_2015_CVPR_paper.pdf
Hashing by Deep Learning
- intro: IBM T. J. Watson Research Center
- paper: http://www.ee.columbia.edu/~wliu/WeiLiu_DLHash.pdf
Deep Semantic Ranking Based Hashing for Multi-Label Image Retrieval
- intro: CVPR 2015. DSRH (Deep Semantic Ranking Hashing)
- arxiv: http://arxiv.org/abs/1501.06272
Deep Learning of Binary Hash Codes for Fast Image Retrieval
- intro: CVPR Workshop 2015
- keywords: MNIST, CIFAR-10, Yahoo-1M. DLBHC (Deep Learning of Binary Hash Codes)
- paper: http://www.iis.sinica.edu.tw/~kevinlin311.tw/cvprw15.pdf
- github: https://github.com/kevinlin311tw/caffe-cvprw15
Supervised Learning of Semantics-Preserving Hashing via Deep Neural Networks for Large-Scale Image Search
- intro: SSDH
- arxiv: http://arxiv.org/abs/1507.00101
- github: https://github.com/kevinlin311tw/Caffe-DeepBinaryCode
Bit-Scalable Deep Hashing with Regularized Similarity Learning for Image Retrieval and Person Re-identification
- intro: IEEE Transactions on Image Processing 2015
- keywords: DRSCH (Deep Regularized Similarity Comparison Hashing)
- project page: http://vision.sysu.edu.cn/projects/deephashing/
- arxiv: https://arxiv.org/abs/1508.04535
- github: https://github.com/ruixuejianfei/BitScalableDeepHash
Deep Supervised Hashing for Fast Image Retrieval
- intro: CVPR 2016
- keywords: DSH (Deep Supervised Hashing)
- paper: http://www.cv-foundation.org/openaccess/content_cvpr_2016/papers/Liu_Deep_Supervised_Hashing_CVPR_2016_paper.pdf
- paper: http://www.jdl.ac.cn/doc/2011/201711214443668218_deep%20supervised%20hashing%20for%20fast%20image%20retrieval_cvpr2016.pdf
- github: https://github.com/lhmRyan/deep-supervised-hashing-DSH
Deep Hashing Network for Efficient Similarity Retrieval
- intro: AAAI 2016
- paper: http://www.aaai.org/ocs/index.php/AAAI/AAAI16/paper/view/12039
Feature Learning based Deep Supervised Hashing with Pairwise Labels
- intro: IJCAI 2016
- arxiv: https://arxiv.org/abs/1511.03855
- paper: https://www.ijcai.org/Proceedings/16/Papers/245.pdf
- paper: https://cs.nju.edu.cn/lwj/paper/IJCAI16_DPSH.pdf
- code: http://cs.nju.edu.cn/lwj/code/DPSH_code.rar
Deep Cross-Modal Hashing
https://arxiv.org/abs/1602.02255
Cycle-Consistent Deep Generative Hashing for Cross-Modal Retrieval
https://arxiv.org/abs/1804.11013
SSDH: Semi-supervised Deep Hashing for Large Scale Image Retrieval
Deep Semantic-Preserving and Ranking-Based Hashing for Image Retrieval
- intro: Microsoft
- paper: http://www.microsoft.com/en-us/research/wp-content/uploads/2016/08/Deep-Semantic-Preserving-and-Ranking-Based-Hashing-for-Image-Retrieval.pdf
Deep Hashing: A Joint Approach for Image Signature Learning
Transitive Hashing Network for Heterogeneous Multimedia Retrieval
- intro: state of the art on NUS-WIDE, ImageNet-YahooQA
- arxiv: http://arxiv.org/abs/1608.04307
Deep Residual Hashing
Deep Region Hashing for Efficient Large-scale Instance Search from Images
- intro: Columbia University & University of Electronic Science and Technology of China
- arxiv: https://arxiv.org/abs/1701.07901
HashNet: Deep Learning to Hash by Continuation
- intro: ICCV 2017. Tsinghua University
- arxiv: https://arxiv.org/abs/1702.00758
- github: https://github.com/thuml/HashNet
Unsupervised Triplet Hashing for Fast Image Retrieval
Deep Sketch Hashing: Fast Free-hand Sketch-Based Image Retrieval
- intro: CVPR 2017 spotlight paper
- arxiv: https://arxiv.org/abs/1703.05605
Learning Robust Hash Codes for Multiple Instance Image Retrieval
Simultaneous Feature Aggregating and Hashing for Large-scale Image Search
- intro: CVPR 2017
- arxiv: https://arxiv.org/abs/1704.00860
Learning to Hash
Hashing as Tie-Aware Learning to Rank
https://arxiv.org/abs/1705.08562
Deep Hashing Network for Unsupervised Domain Adaptation
- intro: CVPR 2017
- arxiv: https://arxiv.org/abs/1706.07522
- github(MatConvNet): https://github.com/hemanthdv/da-hash
Deep Binary Reconstruction for Cross-modal Hashing
- intro: ACM Multimedia 2017
- arxiv: https://arxiv.org/abs/1708.05127
A Revisit on Deep Hashings for Large-scale Content Based Image Retrieval
- intro: Zhejiang University
- arixv: https://arxiv.org/abs/1711.06016
The Devil is in the Middle: Exploiting Mid-level Representations for Cross-Domain Instance Matching
https://arxiv.org/abs/1711.08106
ForestHash: Semantic Hashing With Shallow Random Forests and Tiny Convolutional Networks
https://arxiv.org/abs/1711.08364
Supervised Hashing with End-to-End Binary Deep Neural Network
https://arxiv.org/abs/1711.08901
Transfer Adversarial Hashing for Hamming Space Retrieval
https://arxiv.org/abs/1712.04616
Dual Asymmetric Deep Hashing Learning
https://arxiv.org/abs/1801.08360
Attribute-Guided Network for Cross-Modal Zero-Shot Hashing
https://arxiv.org/abs/1802.01943
Deep Reinforcement Learning for Image Hashing
https://arxiv.org/abs/1802.02904
Hashing with Mutual Information
https://arxiv.org/abs/1803.00974
Zero-Shot Sketch-Image Hashing
- intro: CVPR 2018 spotlight
- arxiv: https://arxiv.org/abs/1803.02284
Instance Similarity Deep Hashing for Multi-Label Image Retrieval
https://arxiv.org/abs/1803.02987
Deep Class-Wise Hashing: Semantics-Preserving Hashing via Class-wise Loss
- intro: City University of Hong Kong
- arxiv: https://arxiv.org/abs/1803.04137
Unsupervised Semantic Deep Hashing
https://arxiv.org/abs/1803.06911
SketchMate: Deep Hashing for Million-Scale Human Sketch Retrieval
- intro: CVPR 2018
- arxiv: https://arxiv.org/abs/1804.01401
Improving Deep Binary Embedding Networks by Order-aware Reweighting of Triplets
- intro: Sun Yat-sen University
- arxiv: https://arxiv.org/abs/1804.06061
Deep Semantic Hashing with Generative Adversarial Networks
- intro: SIGIR 2017 Oral
- arxiv: https://arxiv.org/abs/1804.08275
Deep Ordinal Hashing with Spatial Attention
https://arxiv.org/abs/1805.02459
Cross Modal Retrieval
Cross-domain Image Retrieval with a Dual Attribute-aware Ranking Network
- intro: ICCV 2015
- intro: DARN, cross-entropy loss, triplet loss
- arxiv: http://arxiv.org/abs/1505.07922
Deep Learning for Content-Based, Cross-Modal Retrieval of Videos and Music
- arxiv: https://arxiv.org/abs/1704.06761
- supplementary: https://youtu.be/ZyINqDMo3Fg
Deep Binaries: Encoding Semantic-Rich Cues for Efficient Textual-Visual Cross Retrieval
- intro: ICCV 2017
- arxiv: https://arxiv.org/abs/1708.02531
MHTN: Modal-adversarial Hybrid Transfer Network for Cross-modal Retrieval
https://arxiv.org/abs/1708.04308
Cross-Domain Image Retrieval with Attention Modeling
https://arxiv.org/abs/1709.01784
Look, Imagine and Match: Improving Textual-Visual Cross-Modal Retrieval with Generative Models
https://arxiv.org/abs/1711.06420
HashGAN:Attention-aware Deep Adversarial Hashing for Cross Modal Retrieval
https://arxiv.org/abs/1711.09347
Objects that Sound
- intro: DeepMind, VGG
- arxiv: https://arxiv.org/abs/1712.06651
Cross-modal Embeddings for Video and Audio Retrieval
Learnable PINs: Cross-Modal Embeddings for Person Identity
- intro: VGG
- arxiv: https://arxiv.org/abs/1805.00833
Projects
HABIR哈希图像检索工具箱
- intro: Various hashing methods for image retrieval and serves as the baselines
- blog: http://yongyuan.name/habir/
- github: https://github.com/willard-yuan/hashing-baseline-for-image-retrieval
Video Indexing / Retrieval
Face Video Retrieval via Deep Learning of Binary Hash Representations
Deep Learning Based Semantic Video Indexing and Retrieval
Learning Joint Representations of Videos and Sentences with Web Image Search
- intro: 4th Workshop on Web-scale Vision and Social Media (VSM), ECCV 2016
- arxiv: http://arxiv.org/abs/1608.02367
Multi-View Product Image Search Using ConvNets Features
Generalisation and Sharing in Triplet Convnets for Sketch based Visual Search
Binary Subspace Coding for Query-by-Image Video Retrieval
Action Search: Learning to Search for Human Activities in Untrimmed Videos
https://arxiv.org/abs/1706.04269
Deep Supervised Hashing with Triplet Labels
- intro: ACCV 2016
- arxiv: https://arxiv.org/abs/1612.03900
Supervised Deep Hashing for Hierarchical Labeled Data
Localizing Moments in Video with Natural Language
- intro: ICCV 2017
- arxiv: https://arxiv.org/abs/1708.01641
Dress like a Star: Retrieving Fashion Products from Videos
- intro: Aston University
- arxiv: https://arxiv.org/abs/1710.07198
Deep Hashing with Category Mask for Fast Video Retrieval
https://arxiv.org/abs/1712.08315
Focus: Querying Large Video Datasets with Low Latency and Low Cost
https://arxiv.org/abs/1801.03493
Text-to-Clip Video Retrieval with Early Fusion and Re-Captioning
- intro: Boston University, University of British Columbia
- arxiv: https://arxiv.org/abs/1804.05113
Learning to Rank
Simple to Complex Cross-modal Learning to Rank
- intro: Xi’an Jiaotong University & University of Technology Sydney & National University of Singapore & CMU
- arxiv: https://arxiv.org/abs/1702.01229
Deep Metric Learning
Deep metric learning using Triplet network
- arxiv: https://arxiv.org/abs/1412.6622
- slides: http://tce.technion.ac.il/wp-content/uploads/sites/8/2016/01/Elad-Hofer.pdf
- github: https://github.com/eladhoffer/TripletNet
Improved Deep Metric Learning with Multi-class N-pair Loss Objective
- intro: NIPS 2016
- arxiv: http://www.nec-labs.com/uploads/images/Department-Images/MediaAnalytics/papers/nips16_npairmetriclearning.pdf
Metric Learning with Adaptive Density Discrimination
- intro: ICLR 2016. Facebook AI Research & UC Berkeley
- arxiv: https://arxiv.org/abs/1511.05939
- github: https://github.com/pumpikano/tf-magnet-loss
- github: https://github.com/vithursant/MagnetLoss-PyTorch/
Hard-Aware Deeply Cascaded Embedding
- intro: ICCV 2017
- arxiv: https://arxiv.org/abs/1611.05720
- paper: http://openaccess.thecvf.com/content_ICCV_2017/papers/Yuan_Hard-Aware_Deeply_Cascaded_ICCV_2017_paper.pdf
- github: https://github.com/PkuRainBow/Hard-Aware-Deeply-Cascaded-Embedding_release
- github: https://github.com/PkuRainBow/Hard-Aware-Deeply-Cascaed-Embedding
Learnable Structured Clustering Framework for Deep Metric Learning
Deep Metric Learning via Lifted Structured Feature Embedding
- intro: CVPR 2016
- project page(code+data): http://cvgl.stanford.edu/projects/lifted_struct/
- paper: http://www.cv-foundation.org/openaccess/content_cvpr_2016/papers/Song_Deep_Metric_Learning_CVPR_2016_paper.pdf
- paper: http://cvgl.stanford.edu/papers/song_cvpr16.pdf
- github: https://github.com/rksltnl/Deep-Metric-Learning-CVPR16
- github: https://github.com/rksltnl/Caffe-Deep-Metric-Learning-CVPR16
- dataset: ftp://cs.stanford.edu/cs/cvgl/Stanford_Online_Products.zip
Cross-modal Deep Metric Learning with Multi-task Regularization
- intro: ICME 2017
- arxiv: https://arxiv.org/abs/1703.07026
Smart Mining for Deep Metric Learning
https://arxiv.org/abs/1704.01285
DarkRank: Accelerating Deep Metric Learning via Cross Sample Similarities Transfer
- intro: TuSimple
- keywords: pedestrian re-identification
- arxiv: https://arxiv.org/abs/1707.01220
Deep Metric Learning with Angular Loss
- intro: ICCV 2017
- arxiv: https://arxiv.org/abs/1708.01682
Deep Metric Learning with BIER: Boosting Independent Embeddings Robustly
https://arxiv.org/abs/1801.04815
Directional Statistics-based Deep Metric Learning for Image Classification and Retrieval
https://arxiv.org/abs/1802.09662
Generalization in Metric Learning: Should the Embedding Layer be the Embedding Layer?
- intro: Georgia Tech
- keywords: Cars-196, CUB-200-2011 and Stanford Online Product
- arxiv: https://arxiv.org/abs/1803.03310
Deep Metric Learning
- github(PyTorch): https://github.com/bnulihaixia/Deep_metric
Attention-based Ensemble for Deep Metric Learning
https://arxiv.org/abs/1804.00382
Talks / Slides
TiefVision: end-to-end image similarity search engine
- intro: It covers image classification, image location ( OverFeat ) and image similarity ( Deep Ranking).
- slides: https://docs.google.com/presentation/d/16hrXJhOzkbmla9AL7JCreCuBsa5L80gm71Pfrjo7F9Y/edit#slide=id.p
- github: https://github.com/paucarre/tiefvision
Projects
图像检索:CNN卷积神经网络与实战
CNN for Image Retrieval
- blog: http://yongyuan.name/blog/CBIR-CNN-and-practice.html
- github: https://github.com/willard-yuan/CNN-for-Image-Retrieval
- demo: http://yongyuan.name/pic/
Visual Search Server
- intro: A simple implementation of Visual Search using features extracted from Tensorflow inception model and Approximate Nearest Neighbors
- github: https://github.com/AKSHAYUBHAT/VisualSearchServer
Vehicle Retrieval: vehicle image retrieval using k CNNs ensemble method
- intro: ranked 1st and won the special prize in the final of the 3rd National Gradute Contest on Smart-CIty Technology and Creative Design, China
- project page: https://www.pkuml.org/resources/pku-vehicleid.html
- github: https://github.com/iamhankai/vehicle-retrieval-kCNNs
A visual search engine based on Elasticsearch and Tensorflow
- keywords: faster r-cnn
- github: https://github.com/tuan3w/visual_search
Siamese and triplet networks with online pair/triplet mining in PyTorch
https://github.com/adambielski/siamese-triplet
Triplet Loss and Online Triplet Mining in TensorFlow
- blog: https://omoindrot.github.io/triplet-loss
- gtihub: https://github.com/omoindrot/tensorflow-triplet-loss
Blogs
Where can I buy a chair like that? – This app will tell you
Using Sketches to Search for Products Online
- homepage: http://sketchx.eecs.qmul.ac.uk/
- blog: https://news.developer.nvidia.com/using-sketches-to-search-for-products-online/
Tutorials
Deep Image Retrieval: Learning global representations for image search
Image Instance Retrieval: Overview of state-of-the-art