Tracking
DLT
Learning A Deep Compact Image Representation for Visual Tracking
- intro: NIPS 2013
- project page: http://winsty.net/dlt.html
Hierarchical Convolutional Features for Visual Tracking
- intro: ICCV 2015
- project page: https://sites.google.com/site/jbhuang0604/publications/cf2
- github: https://github.com/jbhuang0604/CF2
Robust Visual Tracking via Convolutional Networks
- arxiv: http://arxiv.org/abs/1501.04505
- paper: http://kaihuazhang.net/CNT.pdf
- code: http://kaihuazhang.net/CNT_matlab.rar
SO-DLT
Transferring Rich Feature Hierarchies for Robust Visual Tracking
MDNet
Learning Multi-Domain Convolutional Neural Networks for Visual Tracking
- intro: The Winner of The VOT2015 Challenge
- keywords: Multi-Domain Network (MDNet)
- homepage: http://cvlab.postech.ac.kr/research/mdnet/
- arxiv: http://arxiv.org/abs/1510.07945
- github: https://github.com/HyeonseobNam/MDNet
RATM: Recurrent Attentive Tracking Model
Understanding and Diagnosing Visual Tracking Systems
- intro: ICCV 2015
- project page: http://winsty.net/tracker_diagnose.html
- paper: http://winsty.net/papers/diagnose.pdf
- code(Matlab): http://120.52.72.43/winsty.net/c3pr90ntcsf0/diagnose/diagnose_code.zip
Recurrently Target-Attending Tracking
- paper: http://www.cv-foundation.org/openaccess/content_cvpr_2016/html/Cui_Recurrently_Target-Attending_Tracking_CVPR_2016_paper.html
- paper: http://www.cv-foundation.org/openaccess/content_cvpr_2016/papers/Cui_Recurrently_Target-Attending_Tracking_CVPR_2016_paper.pdf
Visual Tracking with Fully Convolutional Networks
- intro: ICCV 2015
- paper: http://202.118.75.4/lu/Paper/ICCV2015/iccv15_lijun.pdf
- github: https://github.com/scott89/FCNT
Deep Tracking: Seeing Beyond Seeing Using Recurrent Neural Networks
- intro: AAAI 2016
- arxiv: http://arxiv.org/abs/1602.00991
- github: https://github.com/pondruska/DeepTracking
Learning to Track at 100 FPS with Deep Regression Networks
- intro: ECCV 2015
- intro: GOTURN: Generic Object Tracking Using Regression Networks
- project page: http://davheld.github.io/GOTURN/GOTURN.html
- arxiv: http://arxiv.org/abs/1604.01802
- github: https://github.com/davheld/GOTURN
Learning by tracking: Siamese CNN for robust target association
Fully-Convolutional Siamese Networks for Object Tracking
- intro: ECCV 2016
- intro: State-of-the-art performance in arbitrary object tracking at 50-100 FPS with Fully Convolutional Siamese networks
- project page: http://www.robots.ox.ac.uk/~luca/siamese-fc.html
- arxiv: http://arxiv.org/abs/1606.09549
- github(official): https://github.com/bertinetto/siamese-fc
- github(official): https://github.com/torrvision/siamfc-tf
- valse-video: http://www.iqiyi.com/w_19ruirwrel.html#vfrm=8-8-0-1
Hedged Deep Tracking
- project page(paper+code): https://sites.google.com/site/yuankiqi/hdt
- paper: https://docs.google.com/viewer?a=v&pid=sites&srcid=ZGVmYXVsdGRvbWFpbnx5dWFua2lxaXxneDoxZjc2MmYwZGIzNjFhYTRl
ROLO
Spatially Supervised Recurrent Convolutional Neural Networks for Visual Object Tracking
- intro: ROLO is short for Recurrent YOLO, aimed at simultaneous object detection and tracking
- project page: http://guanghan.info/projects/ROLO/
- arxiv: http://arxiv.org/abs/1607.05781
- github: https://github.com/Guanghan/ROLO
Visual Tracking via Shallow and Deep Collaborative Model
Beyond Correlation Filters: Learning Continuous Convolution Operators for Visual Tracking
- intro: ECCV 2016
- intro: OTB-2015 (+5.1% in mean OP), Temple-Color (+4.6% in mean OP), and VOT2015 (20% relative reduction in failure rate)
- keywords: Continuous Convolution Operator Tracker (C-COT)
- project page: http://www.cvl.isy.liu.se/research/objrec/visualtracking/conttrack/index.html
- arxiv: http://arxiv.org/abs/1608.03773
- github(MATLAB): https://github.com/martin-danelljan/Continuous-ConvOp
Predictive Vision Model (PVM)
Unsupervised Learning from Continuous Video in a Scalable Predictive Recurrent Network
- arxiv: http://arxiv.org/abs/1607.06854
- github: https://github.com/braincorp/PVM
Modeling and Propagating CNNs in a Tree Structure for Visual Tracking
Robust Scale Adaptive Kernel Correlation Filter Tracker With Hierarchical Convolutional Features
Deep Tracking on the Move: Learning to Track the World from a Moving Vehicle using Recurrent Neural Networks
OTB Results: visual tracker benchmark results
Convolutional Regression for Visual Tracking
Semantic tracking: Single-target tracking with inter-supervised convolutional networks
SANet: Structure-Aware Network for Visual Tracking
ECO: Efficient Convolution Operators for Tracking
- intro: CVPR 2017
- project page: http://www.cvl.isy.liu.se/research/objrec/visualtracking/ecotrack/index.html
- arxiv: https://arxiv.org/abs/1611.09224
- github: https://github.com/martin-danelljan/ECO
Dual Deep Network for Visual Tracking
Deep Motion Features for Visual Tracking
- intro: ICPR 2016. Best paper award in the “Computer Vision and Robot Vision” track
- arxiv: https://arxiv.org/abs/1612.06615
Globally Optimal Object Tracking with Fully Convolutional Networks
Robust and Real-time Deep Tracking Via Multi-Scale Domain Adaptation
- arxiv: https://arxiv.org/abs/1701.00561
- bitbucket: https://bitbucket.org/xinke_wang/msdat
Tracking The Untrackable: Learning To Track Multiple Cues with Long-Term Dependencies
Large Margin Object Tracking with Circulant Feature Maps
- intro: CVPR 2017
- intro: The experimental results demonstrate that the proposed tracker performs superiorly against several state-of-the-art algorithms on the challenging benchmark sequences while runs at speed in excess of 80 frames per secon
- arxiv: https://arxiv.org/abs/1703.05020
- notes: https://zhuanlan.zhihu.com/p/25761718
DCFNet: Discriminant Correlation Filters Network for Visual Tracking
End-to-end representation learning for Correlation Filter based tracking
- intro: CVPR 2017. University of Oxford
- intro: Training a Correlation Filter end-to-end allows lightweight networks of 2 layers (600 kB) to achieve state-of-the-art performance in tracking, at high-speed.
- project page: http://www.robots.ox.ac.uk/~luca/cfnet.html
- arxiv: https://arxiv.org/abs/1704.06036
- gtihub: https://github.com/bertinetto/cfnet
Context-Aware Correlation Filter Tracking
- intro: CVPR 2017 Oral
- project page: https://ivul.kaust.edu.sa/Pages/pub-ca-cf-tracking.aspx
- paper: https://ivul.kaust.edu.sa/Documents/Publications/2017/Context-Aware%20Correlation%20Filter%20Tracking.pdf
- github: https://github.com/thias15/Context-Aware-CF-Tracking
Robust Multi-view Pedestrian Tracking Using Neural Networks
https://arxiv.org/abs/1704.06370
Re3 : Real-Time Recurrent Regression Networks for Object Tracking
- intro: University of Washington
- arxiv: https://arxiv.org/abs/1705.06368
- demo: https://www.youtube.com/watch?v=PC0txGaYz2I
Robust Tracking Using Region Proposal Networks
https://arxiv.org/abs/1705.10447
Hierarchical Attentive Recurrent Tracking
- intro: NIPS 2017. University of Oxford
- arxiv: https://arxiv.org/abs/1706.09262
- github: https://github.com/akosiorek/hart
- results: https://youtu.be/Vvkjm0FRGSs
Siamese Learning Visual Tracking: A Survey
https://arxiv.org/abs/1707.00569
Robust Visual Tracking via Hierarchical Convolutional Features
- project page: https://sites.google.com/site/chaoma99/hcft-tracking
- arxiv: https://arxiv.org/abs/1707.03816
- github: https://github.com/chaoma99/HCFTstar
CREST: Convolutional Residual Learning for Visual Tracking
- intro: ICCV 2017
- project page: http://www.cs.cityu.edu.hk/~yibisong/iccv17/index.html
- arxiv: https://arxiv.org/abs/1708.00225
- github: https://github.com/ybsong00/CREST-Release
Learning Policies for Adaptive Tracking with Deep Feature Cascades
- intro: ICCV 2017 Spotlight
- arxiv: https://arxiv.org/abs/1708.02973
Recurrent Filter Learning for Visual Tracking
- intro: ICCV 2017 Workshop on VOT
- arxiv: https://arxiv.org/abs/1708.03874
Correlation Filters with Weighted Convolution Responses
- intro: ICCV 2017 workshop. 5th visual object tracking(VOT) tracker CFWCR
- paper: http://openaccess.thecvf.com/content_ICCV_2017_workshops/papers/w28/He_Correlation_Filters_With_ICCV_2017_paper.pdf
- github: https://github.com/he010103/CFWCR
Semantic Texture for Robust Dense Tracking
https://arxiv.org/abs/1708.08844
Learning Multi-frame Visual Representation for Joint Detection and Tracking of Small Objects
https://arxiv.org/abs/1709.04666
Tracking Persons-of-Interest via Unsupervised Representation Adaptation
- intro: Northwestern Polytechnical University & Virginia Tech & Hanyang University
- keywords: Multi-face tracking
- project page: http://vllab1.ucmerced.edu/~szhang/FaceTracking/
- arxiv: https://arxiv.org/abs/1710.02139
End-to-end Flow Correlation Tracking with Spatial-temporal Attention
https://arxiv.org/abs/1711.01124
UCT: Learning Unified Convolutional Networks for Real-time Visual Tracking
- intro: ICCV 2017 Workshops
- arxiv: https://arxiv.org/abs/1711.04661
Pixel-wise object tracking
https://arxiv.org/abs/1711.07377
MAVOT: Memory-Augmented Video Object Tracking
https://arxiv.org/abs/1711.09414
Learning Hierarchical Features for Visual Object Tracking with Recursive Neural Networks
https://arxiv.org/abs/1801.02021
Parallel Tracking and Verifying
https://arxiv.org/abs/1801.10496
Saliency-Enhanced Robust Visual Tracking
https://arxiv.org/abs/1802.02783
A Twofold Siamese Network for Real-Time Object Tracking
- intro: CVPR 2018
- arxiv: https://arxiv.org/abs/1802.08817
Learning Dynamic Memory Networks for Object Tracking
https://arxiv.org/abs/1803.07268
Context-aware Deep Feature Compression for High-speed Visual Tracking
- intro: CVPR 2018
- arxiv: https://arxiv.org/abs/1803.10537
VITAL: VIsual Tracking via Adversarial Learning
- intro: CVPR 2018 Spotlight
- arixv: https://arxiv.org/abs/1804.04273
Unveiling the Power of Deep Tracking
https://arxiv.org/abs/1804.06833
A Novel Low-cost FPGA-based Real-time Object Tracking System
- intro: ASICON 2017
- arxiv: https://arxiv.org/abs/1804.05535
MV-YOLO: Motion Vector-aided Tracking by Semantic Object Detection
https://arxiv.org/abs/1805.00107
Multi-Object Tracking (MOT)
Virtual Worlds as Proxy for Multi-Object Tracking Analysis
- arxiv: http://arxiv.org/abs/1605.06457
- dataset(Virtual KITTI): http://www.xrce.xerox.com/Research-Development/Computer-Vision/Proxy-Virtual-Worlds
Multi-Person Tracking by Multicut and Deep Matching
Multi-Class Multi-Object Tracking using Changing Point Detection
- intro: changing point detection, entity transition, object detection from video, convolutional neural network
- arxiv: http://arxiv.org/abs/1608.08434
POI: Multiple Object Tracking with High Performance Detection and Appearance Feature
- intro: ECCV workshop BMTT 2016. Sensetime
- keywords: KDNT
- arxiv: https://arxiv.org/abs/1610.06136
Simple Online and Realtime Tracking with a Deep Association Metric
- arxiv: https://arxiv.org/abs/1703.07402
- mot challenge: https://motchallenge.net/tracker/DeepSORT_2
- github(official, Python): https://github.com/nwojke/deep_sort
- github(C++): https://github.com/oylz/ds
Deep Network Flow for Multi-Object Tracking
- intro: CVPR 2017
- arxiv: https://arxiv.org/abs/1706.08482
Online Multi-Object Tracking Using CNN-based Single Object Tracker with Spatial-Temporal Attention Mechanism
https://arxiv.org/abs/1708.02843
Recurrent Autoregressive Networks for Online Multi-Object Tracking
https://arxiv.org/abs/1711.02741
SOT for MOT
- intro: Tsinghua University & Megvii Inc. (Face++)
- arxiv: https://arxiv.org/abs/1712.01059
Multi-Target, Multi-Camera Tracking by Hierarchical Clustering: Recent Progress on DukeMTMC Project
https://arxiv.org/abs/1712.09531
Multiple Target Tracking by Learning Feature Representation and Distance Metric Jointly
https://arxiv.org/abs/1802.03252
Tracking Noisy Targets: A Review of Recent Object Tracking Approaches
https://arxiv.org/abs/1802.03098
Machine Learning Methods for Solving Assignment Problems in Multi-Target Tracking
- intro: University of Florida
- arxiv: https://arxiv.org/abs/1802.06897
Tracking by Prediction: A Deep Generative Model for Mutli-Person localisation and Tracking
- intro: WACV 2018. Queensland University of Technology (QUT)
- arxiv: https://arxiv.org/abs/1803.03347
Learning to Detect and Track Visible and Occluded Body Joints in a Virtual World
- intro: University of Modena and Reggio Emilia
- arxiv: https://arxiv.org/abs/1803.08319
Features for Multi-Target Multi-Camera Tracking and Re-Identification
- intro: CVPR 2018
- intro: https://arxiv.org/abs/1803.10859
Trajectory Factory: Tracklet Cleaving and Re-connection by Deep Siamese Bi-GRU for Multiple Object Tracking
- intro: Peking University
- arxiv: https://arxiv.org/abs/1804.04555
Tracking with Reinforcement Learning
Deep Reinforcement Learning for Visual Object Tracking in Videos
- intro: University of California at Santa Barbara & Samsung Research America
- arxiv: https://arxiv.org/abs/1701.08936
Visual Tracking by Reinforced Decision Making
End-to-end Active Object Tracking via Reinforcement Learning
https://arxiv.org/abs/1705.10561
Action-Decision Networks for Visual Tracking with Deep Reinforcement Learning
- project page: https://sites.google.com/view/cvpr2017-adnet
- paper: https://drive.google.com/file/d/0B34VXh5mZ22cZUs2Umc1cjlBMFU/view?usp=drive_web
Tracking as Online Decision-Making: Learning a Policy from Streaming Videos with Reinforcement Learning
https://arxiv.org/abs/1707.04991
Detect to Track and Track to Detect
- intro: ICCV 2017
- project page: https://www.robots.ox.ac.uk/~vgg/research/detect-track/
- arxiv: https://arxiv.org/abs/1710.03958
- github: https://github.com/feichtenhofer/Detect-Track
Projects
Tensorflow_Object_Tracking_Video
- intro: Object Tracking in Tensorflow ( Localization Detection Classification ) developed to partecipate to ImageNET VID competition
- github: https://github.com/DrewNF/Tensorflow_Object_Tracking_Video