Tracking
DLT
Learning A Deep Compact Image Representation for Visual Tracking
- intro: NIPS 2013
- project page: http://winsty.net/dlt.html
Hierarchical Convolutional Features for Visual Tracking
- intro: ICCV 2015
- project page: https://sites.google.com/site/jbhuang0604/publications/cf2
- github: https://github.com/jbhuang0604/CF2
Robust Visual Tracking via Convolutional Networks
- arxiv: http://arxiv.org/abs/1501.04505
- paper: http://kaihuazhang.net/CNT.pdf
- code: http://kaihuazhang.net/CNT_matlab.rar
SO-DLT
Transferring Rich Feature Hierarchies for Robust Visual Tracking
MDNet
Learning Multi-Domain Convolutional Neural Networks for Visual Tracking
- intro: The Winner of The VOT2015 Challenge
- keywords: Multi-Domain Network (MDNet)
- homepage: http://cvlab.postech.ac.kr/research/mdnet/
- arxiv: http://arxiv.org/abs/1510.07945
- github: https://github.com/HyeonseobNam/MDNet
RATM: Recurrent Attentive Tracking Model
Understanding and Diagnosing Visual Tracking Systems
- intro: ICCV 2015
- project page: http://winsty.net/tracker_diagnose.html
- paper: http://winsty.net/papers/diagnose.pdf
- code(Matlab): http://120.52.72.43/winsty.net/c3pr90ntcsf0/diagnose/diagnose_code.zip
Recurrently Target-Attending Tracking
- paper: http://www.cv-foundation.org/openaccess/content_cvpr_2016/html/Cui_Recurrently_Target-Attending_Tracking_CVPR_2016_paper.html
- paper: http://www.cv-foundation.org/openaccess/content_cvpr_2016/papers/Cui_Recurrently_Target-Attending_Tracking_CVPR_2016_paper.pdf
Visual Tracking with Fully Convolutional Networks
- intro: ICCV 2015
- paper: http://202.118.75.4/lu/Paper/ICCV2015/iccv15_lijun.pdf
- github: https://github.com/scott89/FCNT
Deep Tracking: Seeing Beyond Seeing Using Recurrent Neural Networks
- intro: AAAI 2016
- arxiv: http://arxiv.org/abs/1602.00991
- github: https://github.com/pondruska/DeepTracking
Learning to Track at 100 FPS with Deep Regression Networks
- intro: ECCV 2015
- intro: GOTURN: Generic Object Tracking Using Regression Networks
- project page: http://davheld.github.io/GOTURN/GOTURN.html
- arxiv: http://arxiv.org/abs/1604.01802
- github: https://github.com/davheld/GOTURN
Learning by tracking: Siamese CNN for robust target association
Fully-Convolutional Siamese Networks for Object Tracking
- intro: ECCV 2016
- intro: State-of-the-art performance in arbitrary object tracking at 50-100 FPS with Fully Convolutional Siamese networks
- project page: http://www.robots.ox.ac.uk/~luca/siamese-fc.html
- arxiv: http://arxiv.org/abs/1606.09549
- github(official): https://github.com/bertinetto/siamese-fc
- github(official): https://github.com/torrvision/siamfc-tf
- valse-video: http://www.iqiyi.com/w_19ruirwrel.html#vfrm=8-8-0-1
Hedged Deep Tracking
- project page(paper+code): https://sites.google.com/site/yuankiqi/hdt
- paper: https://docs.google.com/viewer?a=v&pid=sites&srcid=ZGVmYXVsdGRvbWFpbnx5dWFua2lxaXxneDoxZjc2MmYwZGIzNjFhYTRl
ROLO
Spatially Supervised Recurrent Convolutional Neural Networks for Visual Object Tracking
- intro: ROLO is short for Recurrent YOLO, aimed at simultaneous object detection and tracking
- project page: http://guanghan.info/projects/ROLO/
- arxiv: http://arxiv.org/abs/1607.05781
- github: https://github.com/Guanghan/ROLO
Visual Tracking via Shallow and Deep Collaborative Model
Beyond Correlation Filters: Learning Continuous Convolution Operators for Visual Tracking
- intro: ECCV 2016
- intro: OTB-2015 (+5.1% in mean OP), Temple-Color (+4.6% in mean OP), and VOT2015 (20% relative reduction in failure rate)
- keywords: Continuous Convolution Operator Tracker (C-COT)
- project page: http://www.cvl.isy.liu.se/research/objrec/visualtracking/conttrack/index.html
- arxiv: http://arxiv.org/abs/1608.03773
- github(MATLAB): https://github.com/martin-danelljan/Continuous-ConvOp
Predictive Vision Model (PVM)
Unsupervised Learning from Continuous Video in a Scalable Predictive Recurrent Network
- arxiv: http://arxiv.org/abs/1607.06854
- github: https://github.com/braincorp/PVM
Modeling and Propagating CNNs in a Tree Structure for Visual Tracking
Robust Scale Adaptive Kernel Correlation Filter Tracker With Hierarchical Convolutional Features
Deep Tracking on the Move: Learning to Track the World from a Moving Vehicle using Recurrent Neural Networks
OTB Results: visual tracker benchmark results
Convolutional Regression for Visual Tracking
Semantic tracking: Single-target tracking with inter-supervised convolutional networks
SANet: Structure-Aware Network for Visual Tracking
ECO: Efficient Convolution Operators for Tracking
- intro: CVPR 2017
- project page: http://www.cvl.isy.liu.se/research/objrec/visualtracking/ecotrack/index.html
- arxiv: https://arxiv.org/abs/1611.09224
- github: https://github.com/martin-danelljan/ECO
Dual Deep Network for Visual Tracking
Deep Motion Features for Visual Tracking
- intro: ICPR 2016. Best paper award in the “Computer Vision and Robot Vision” track
- arxiv: https://arxiv.org/abs/1612.06615
Globally Optimal Object Tracking with Fully Convolutional Networks
Robust and Real-time Deep Tracking Via Multi-Scale Domain Adaptation
- arxiv: https://arxiv.org/abs/1701.00561
- bitbucket: https://bitbucket.org/xinke_wang/msdat
Tracking The Untrackable: Learning To Track Multiple Cues with Long-Term Dependencies
Large Margin Object Tracking with Circulant Feature Maps
- intro: CVPR 2017
- intro: The experimental results demonstrate that the proposed tracker performs superiorly against several state-of-the-art algorithms on the challenging benchmark sequences while runs at speed in excess of 80 frames per secon
- arxiv: https://arxiv.org/abs/1703.05020
- notes: https://zhuanlan.zhihu.com/p/25761718
DCFNet: Discriminant Correlation Filters Network for Visual Tracking
End-to-end representation learning for Correlation Filter based tracking
- intro: CVPR 2017. University of Oxford
- intro: Training a Correlation Filter end-to-end allows lightweight networks of 2 layers (600 kB) to achieve state-of-the-art performance in tracking, at high-speed.
- project page: http://www.robots.ox.ac.uk/~luca/cfnet.html
- arxiv: https://arxiv.org/abs/1704.06036
- gtihub: https://github.com/bertinetto/cfnet
Context-Aware Correlation Filter Tracking
- intro: CVPR 2017 Oral
- project page: https://ivul.kaust.edu.sa/Pages/pub-ca-cf-tracking.aspx
- paper: https://ivul.kaust.edu.sa/Documents/Publications/2017/Context-Aware%20Correlation%20Filter%20Tracking.pdf
- github: https://github.com/thias15/Context-Aware-CF-Tracking
Robust Multi-view Pedestrian Tracking Using Neural Networks
https://arxiv.org/abs/1704.06370
Re3 : Real-Time Recurrent Regression Networks for Object Tracking
- intro: University of Washington
- arxiv: https://arxiv.org/abs/1705.06368
- demo: https://www.youtube.com/watch?v=PC0txGaYz2I
Robust Tracking Using Region Proposal Networks
https://arxiv.org/abs/1705.10447
Hierarchical Attentive Recurrent Tracking
- intro: NIPS 2017. University of Oxford
- arxiv: https://arxiv.org/abs/1706.09262
- github: https://github.com/akosiorek/hart
- results: https://youtu.be/Vvkjm0FRGSs
Siamese Learning Visual Tracking: A Survey
https://arxiv.org/abs/1707.00569
Robust Visual Tracking via Hierarchical Convolutional Features
- project page: https://sites.google.com/site/chaoma99/hcft-tracking
- arxiv: https://arxiv.org/abs/1707.03816
- github: https://github.com/chaoma99/HCFTstar
CREST: Convolutional Residual Learning for Visual Tracking
- intro: ICCV 2017
- project page: http://www.cs.cityu.edu.hk/~yibisong/iccv17/index.html
- arxiv: https://arxiv.org/abs/1708.00225
- github: https://github.com/ybsong00/CREST-Release
Learning Policies for Adaptive Tracking with Deep Feature Cascades
- intro: ICCV 2017 Spotlight
- arxiv: https://arxiv.org/abs/1708.02973
Recurrent Filter Learning for Visual Tracking
- intro: ICCV 2017 Workshop on VOT
- arxiv: https://arxiv.org/abs/1708.03874
Correlation Filters with Weighted Convolution Responses
- intro: ICCV 2017 workshop. 5th visual object tracking(VOT) tracker CFWCR
- paper: http://openaccess.thecvf.com/content_ICCV_2017_workshops/papers/w28/He_Correlation_Filters_With_ICCV_2017_paper.pdf
- github: https://github.com/he010103/CFWCR
Semantic Texture for Robust Dense Tracking
https://arxiv.org/abs/1708.08844
Learning Multi-frame Visual Representation for Joint Detection and Tracking of Small Objects
https://arxiv.org/abs/1709.04666
Tracking Persons-of-Interest via Unsupervised Representation Adaptation
- intro: Northwestern Polytechnical University & Virginia Tech & Hanyang University
- keywords: Multi-face tracking
- project page: http://vllab1.ucmerced.edu/~szhang/FaceTracking/
- arxiv: https://arxiv.org/abs/1710.02139
End-to-end Flow Correlation Tracking with Spatial-temporal Attention
https://arxiv.org/abs/1711.01124
UCT: Learning Unified Convolutional Networks for Real-time Visual Tracking
- intro: ICCV 2017 Workshops
- arxiv: https://arxiv.org/abs/1711.04661
Pixel-wise object tracking
https://arxiv.org/abs/1711.07377
MAVOT: Memory-Augmented Video Object Tracking
https://arxiv.org/abs/1711.09414
Learning Hierarchical Features for Visual Object Tracking with Recursive Neural Networks
https://arxiv.org/abs/1801.02021
Parallel Tracking and Verifying
https://arxiv.org/abs/1801.10496
Saliency-Enhanced Robust Visual Tracking
https://arxiv.org/abs/1802.02783
A Twofold Siamese Network for Real-Time Object Tracking
- intro: CVPR 2018
- arxiv: https://arxiv.org/abs/1802.08817
Learning Dynamic Memory Networks for Object Tracking
https://arxiv.org/abs/1803.07268
Context-aware Deep Feature Compression for High-speed Visual Tracking
- intro: CVPR 2018
- arxiv: https://arxiv.org/abs/1803.10537
VITAL: VIsual Tracking via Adversarial Learning
- intro: CVPR 2018 Spotlight
- arixv: https://arxiv.org/abs/1804.04273
Unveiling the Power of Deep Tracking
https://arxiv.org/abs/1804.06833
A Novel Low-cost FPGA-based Real-time Object Tracking System
- intro: ASICON 2017
- arxiv: https://arxiv.org/abs/1804.05535
MV-YOLO: Motion Vector-aided Tracking by Semantic Object Detection
https://arxiv.org/abs/1805.00107
Multi-Object Tracking (MOT)
Virtual Worlds as Proxy for Multi-Object Tracking Analysis
- arxiv: http://arxiv.org/abs/1605.06457
- dataset(Virtual KITTI): http://www.xrce.xerox.com/Research-Development/Computer-Vision/Proxy-Virtual-Worlds
Multi-Person Tracking by Multicut and Deep Matching
Multi-Class Multi-Object Tracking using Changing Point Detection
- intro: changing point detection, entity transition, object detection from video, convolutional neural network
- arxiv: http://arxiv.org/abs/1608.08434
POI: Multiple Object Tracking with High Performance Detection and Appearance Feature
- intro: ECCV workshop BMTT 2016. Sensetime
- keywords: KDNT
- arxiv: https://arxiv.org/abs/1610.06136
Simple Online and Realtime Tracking with a Deep Association Metric
- arxiv: https://arxiv.org/abs/1703.07402
- mot challenge: https://motchallenge.net/tracker/DeepSORT_2
- github(official, Python): https://github.com/nwojke/deep_sort
- github(C++): https://github.com/oylz/ds
Deep Network Flow for Multi-Object Tracking
- intro: CVPR 2017
- arxiv: https://arxiv.org/abs/1706.08482
Online Multi-Object Tracking Using CNN-based Single Object Tracker with Spatial-Temporal Attention Mechanism
https://arxiv.org/abs/1708.02843
Recurrent Autoregressive Networks for Online Multi-Object Tracking
https://arxiv.org/abs/1711.02741
SOT for MOT
- intro: Tsinghua University & Megvii Inc. (Face++)
- arxiv: https://arxiv.org/abs/1712.01059
Multi-Target, Multi-Camera Tracking by Hierarchical Clustering: Recent Progress on DukeMTMC Project
https://arxiv.org/abs/1712.09531
Multiple Target Tracking by Learning Feature Representation and Distance Metric Jointly
https://arxiv.org/abs/1802.03252
Tracking Noisy Targets: A Review of Recent Object Tracking Approaches
https://arxiv.org/abs/1802.03098
Machine Learning Methods for Solving Assignment Problems in Multi-Target Tracking
- intro: University of Florida
- arxiv: https://arxiv.org/abs/1802.06897
Tracking by Prediction: A Deep Generative Model for Mutli-Person localisation and Tracking
- intro: WACV 2018. Queensland University of Technology (QUT)
- arxiv: https://arxiv.org/abs/1803.03347
Learning to Detect and Track Visible and Occluded Body Joints in a Virtual World
- intro: University of Modena and Reggio Emilia
- arxiv: https://arxiv.org/abs/1803.08319
Features for Multi-Target Multi-Camera Tracking and Re-Identification
- intro: CVPR 2018
- intro: https://arxiv.org/abs/1803.10859
Trajectory Factory: Tracklet Cleaving and Re-connection by Deep Siamese Bi-GRU for Multiple Object Tracking
- intro: Peking University
- arxiv: https://arxiv.org/abs/1804.04555
Tracking with Reinforcement Learning
Deep Reinforcement Learning for Visual Object Tracking in Videos
- intro: University of California at Santa Barbara & Samsung Research America
- arxiv: https://arxiv.org/abs/1701.08936
Visual Tracking by Reinforced Decision Making
End-to-end Active Object Tracking via Reinforcement Learning
https://arxiv.org/abs/1705.10561
Action-Decision Networks for Visual Tracking with Deep Reinforcement Learning
- project page: https://sites.google.com/view/cvpr2017-adnet
- paper: https://drive.google.com/file/d/0B34VXh5mZ22cZUs2Umc1cjlBMFU/view?usp=drive_web
Tracking as Online Decision-Making: Learning a Policy from Streaming Videos with Reinforcement Learning
https://arxiv.org/abs/1707.04991
Detect to Track and Track to Detect
- intro: ICCV 2017
- project page: https://www.robots.ox.ac.uk/~vgg/research/detect-track/
- arxiv: https://arxiv.org/abs/1710.03958
- github: https://github.com/feichtenhofer/Detect-Track
Projects
Tensorflow_Object_Tracking_Video
- intro: Object Tracking in Tensorflow ( Localization Detection Classification ) developed to partecipate to ImageNET VID competition
- github: https://github.com/DrewNF/Tensorflow_Object_Tracking_Video
RNN and LSTM
Types of RNN
1) Plain Tanh Recurrent Nerual Networks
2) Gated Recurrent Neural Networks (GRU)
3) Long Short-Term Memory (LSTM)
Tutorials
The Unreasonable Effectiveness of Recurrent Neural Networks
Understanding LSTM Networks
- blog: http://colah.github.io/posts/2015-08-Understanding-LSTMs/
- blog(zh): http://www.jianshu.com/p/9dc9f41f0b29
A Beginner’s Guide to Recurrent Networks and LSTMs
http://deeplearning4j.org/lstm.html
A Deep Dive into Recurrent Neural Nets
http://nikhilbuduma.com/2015/01/11/a-deep-dive-into-recurrent-neural-networks/
Exploring LSTMs
http://blog.echen.me/2017/05/30/exploring-lstms/
A tutorial on training recurrent neural networks, covering BPPT, RTRL, EKF and the “echo state network” approach
- paper: http://minds.jacobs-university.de/sites/default/files/uploads/papers/ESNTutorialRev.pdf
- slides: http://deeplearning.cs.cmu.edu/notes/shaoweiwang.pdf
Long Short-Term Memory: Tutorial on LSTM Recurrent Networks
http://people.idsia.ch/~juergen/lstm/index.htm
LSTM implementation explained
http://apaszke.github.io/lstm-explained.html
Recurrent Neural Networks Tutorial
- Part 1(Introduction to RNNs): http://www.wildml.com/2015/09/recurrent-neural-networks-tutorial-part-1-introduction-to-rnns/
- Part 2(Implementing a RNN using Python and Theano): http://www.wildml.com/2015/09/recurrent-neural-networks-tutorial-part-2-implementing-a-language-model-rnn-with-python-numpy-and-theano/
- Part 3(Understanding the Backpropagation Through Time (BPTT) algorithm): http://www.wildml.com/2015/10/recurrent-neural-networks-tutorial-part-3-backpropagation-through-time-and-vanishing-gradients/
- Part 4(Implementing a GRU/LSTM RNN): http://www.wildml.com/2015/10/recurrent-neural-network-tutorial-part-4-implementing-a-grulstm-rnn-with-python-and-theano/
Recurrent Neural Networks in DL4J
http://deeplearning4j.org/usingrnns.html
Learning RNN Hierarchies
Element-Research Torch RNN Tutorial for recurrent neural nets : let’s predict time series with a laptop GPU
- blog: https://christopher5106.github.io/deep/learning/2016/07/14/element-research-torch-rnn-tutorial.html
RNNs in Tensorflow, a Practical Guide and Undocumented Features
Learning about LSTMs using Torch
Build a Neural Network (LIVE)
- intro: LSTM
- youtube: https://www.youtube.com/watch?v=KvoZU-ItDiE
- mirror: https://pan.baidu.com/s/1i4KoumL
- github: https://github.com/llSourcell/build_a_neural_net_live
Deriving LSTM Gradient for Backpropagation
http://wiseodd.github.io/techblog/2016/08/12/lstm-backprop/
TensorFlow RNN Tutorial
https://svds.com/tensorflow-rnn-tutorial/
RNN Training Tips and Tricks
https://github.com/karpathy/char-rnn#tips-and-tricks
Tips for Training Recurrent Neural Networks
http://danijar.com/tips-for-training-recurrent-neural-networks/
A Tour of Recurrent Neural Network Algorithms for Deep Learning
http://machinelearningmastery.com/recurrent-neural-network-algorithms-for-deep-learning/
Fundamentals of Deep Learning – Introduction to Recurrent Neural Networks
https://www.analyticsvidhya.com/blog/2017/12/introduction-to-recurrent-neural-networks/
Essentials of Deep Learning : Introduction to Long Short Term Memory
https://www.analyticsvidhya.com/blog/2017/12/fundamentals-of-deep-learning-introduction-to-lstm/
How to build a Recurrent Neural Network in TensorFlow
How to build a Recurrent Neural Network in TensorFlow (1/7)
https://medium.com/@erikhallstrm/hello-world-rnn-83cd7105b767#.2vozogqf7
Using the RNN API in TensorFlow (2/7)
https://medium.com/@erikhallstrm/tensorflow-rnn-api-2bb31821b185#.h0ycrjuo3
Using the LSTM API in TensorFlow (3/7)
https://medium.com/@erikhallstrm/using-the-tensorflow-lstm-api-3-7-5f2b97ca6b73#.k7aciqaxn
Using the Multilayered LSTM API in TensorFlow (4/7)
https://medium.com/@erikhallstrm/using-the-tensorflow-multilayered-lstm-api-f6e7da7bbe40#.dj7dy92m5
Using the DynamicRNN API in TensorFlow (5/7)
https://medium.com/@erikhallstrm/using-the-dynamicrnn-api-in-tensorflow-7237aba7f7ea#.49qw259ks
Using the Dropout API in TensorFlow (6/7)
https://medium.com/@erikhallstrm/using-the-dropout-api-in-tensorflow-2b2e6561dfeb#.a7mc3o9aq
Unfolding RNNs
Unfolding RNNs: RNN : Concepts and Architectures
Unfolding RNNs II: Vanilla, GRU, LSTM RNNs from scratch in Tensorflow
- blog: http://suriyadeepan.github.io/2017-02-13-unfolding-rnn-2/
- github: https://github.com/suriyadeepan/rnn-from-scratch
Train RNN
On the difficulty of training Recurrent Neural Networks
- author: Razvan Pascanu, Tomas Mikolov, Yoshua Bengio
- arxiv: http://arxiv.org/abs/1211.5063
- video talks: http://techtalks.tv/talks/on-the-difficulty-of-training-recurrent-neural-networks/58134/
A Simple Way to Initialize Recurrent Networks of Rectified Linear Units
- arxiv: http://arxiv.org/abs/1504.00941
- gitxiv: http://gitxiv.com/posts/7j5JXvP3kn5Jf8Waj/irnn-experiment-with-pixel-by-pixel-sequential-mnist
- github: https://github.com/fchollet/keras/blob/master/examples/mnist_irnn.py
- github: https://gist.github.com/GabrielPereyra/353499f2e6e407883b32
- blog(“Implementing Recurrent Neural Net using chainer!”): http://t-satoshi.blogspot.jp/2015/06/implementing-recurrent-neural-net-using.html
- reddit: https://www.reddit.com/r/MachineLearning/comments/31rinf/150400941_a_simple_way_to_initialize_recurrent/
- reddit: https://www.reddit.com/r/MachineLearning/comments/32tgvw/has_anyone_been_able_to_reproduce_the_results_in/
Batch Normalized Recurrent Neural Networks
Sequence Level Training with Recurrent Neural Networks
- intro: ICLR 2016
- arxiv: http://arxiv.org/abs/1511.06732
- github: https://github.com/facebookresearch/MIXER
- notes: https://www.evernote.com/shard/s189/sh/ada01a82-70a9-48d4-985c-20492ab91e84/8da92be19e704996dc2b929473abed46
Training Recurrent Neural Networks (PhD thesis)
- atuhor: Ilya Sutskever
- thesis: https://www.cs.utoronto.ca/~ilya/pubs/ilya_sutskever_phd_thesis.pdf
Deep learning for control using augmented Hessian-free optimization
- blog: https://studywolf.wordpress.com/2016/04/04/deep-learning-for-control-using-augmented-hessian-free-optimization/
- github: https://github.com/studywolf/blog/blob/master/train_AHF/train_hf.py
Hierarchical Conflict Propagation: Sequence Learning in a Recurrent Deep Neural Network
Recurrent Batch Normalization
- arxiv: http://arxiv.org/abs/1603.09025
- github: https://github.com/iassael/torch-bnlstm
- github: https://github.com/cooijmanstim/recurrent-batch-normalization
- github(“LSTM with Batch Normalization”): https://github.com/fchollet/keras/pull/2183
- github: https://github.com/jihunchoi/recurrent-batch-normalization-pytorch
- notes: http://www.shortscience.org/paper?bibtexKey=journals/corr/CooijmansBLC16
Batch normalized LSTM for Tensorflow
- blog: http://olavnymoen.com/2016/07/07/rnn-batch-normalization
- github: https://github.com/OlavHN/bnlstm
Optimizing Performance of Recurrent Neural Networks on GPUs
- arxiv: http://arxiv.org/abs/1604.01946
- github: https://github.com/parallel-forall/code-samples/blob/master/posts/rnn/LSTM.cu
Path-Normalized Optimization of Recurrent Neural Networks with ReLU Activations
Explaining and illustrating orthogonal initialization for recurrent neural networks
Professor Forcing: A New Algorithm for Training Recurrent Networks
- intro: NIPS 2016
- arxiv: https://arxiv.org/abs/1610.09038
- github: https://github.com/anirudh9119/LM_GANS
Phased LSTM: Accelerating Recurrent Network Training for Long or Event-based Sequences
- intro: Selected for an oral presentation at NIPS, 2016. University of Zurich and ETH Zurich
- arxiv: https://arxiv.org/abs/1610.09513
- github: https://github.com/dannyneil/public_plstm
- github: https://github.com/Enny1991/PLSTM
- github: https://github.com/philipperemy/tensorflow-phased-lstm
- github: https://www.tensorflow.org/api_docs/python/tf/contrib/rnn/PhasedLSTMCell
- reddit: https://www.reddit.com/r/MachineLearning/comments/5bmfw5/r_phased_lstm_accelerating_recurrent_network/
Tuning Recurrent Neural Networks with Reinforcement Learning (RL Tuner)
- paper: http://openreview.net/pdf?id=BJ8fyHceg
- blog: https://magenta.tensorflow.org/2016/11/09/tuning-recurrent-networks-with-reinforcement-learning/
- github: https://github.com/tensorflow/magenta/tree/master/magenta/models/rl_tuner
Capacity and Trainability in Recurrent Neural Networks
- intro: Google Brain
- arxiv: https://arxiv.org/abs/1611.09913
Learn To Execute Programs
Learning to Execute
- arxiv: http://arxiv.org/abs/1410.4615
- github: https://github.com/wojciechz/learning_to_execute
- github(Tensorflow): https://github.com/raindeer/seq2seq_experiments
Neural Programmer-Interpreters
- intro: Google DeepMind. ICLR 2016 Best Paper
- arxiv: http://arxiv.org/abs/1511.06279
- project page: http://www-personal.umic (Google DeepMind. ICLR 2016 Best Paper)h.edu/~reedscot/iclr_project.html
- github: https://github.com/mokemokechicken/keras_npi
A Programmer-Interpreter Neural Network Architecture for Prefrontal Cognitive Control
Convolutional RNN: an Enhanced Model for Extracting Features from Sequential Data
Neural Random-Access Machines
Attention Models
Recurrent Models of Visual Attention
- intro: Google DeepMind. NIPS 2014
- arxiv: http://arxiv.org/abs/1406.6247
- data: https://github.com/deepmind/mnist-cluttered
- github: https://github.com/Element-Research/rnn/blob/master/examples/recurrent-visual-attention.lua
Recurrent Model of Visual Attention
- intro: Google DeepMind
- paper: http://arxiv.org/abs/1406.6247
- gitxiv: http://gitxiv.com/posts/ZEobCXSh23DE8a8mo/recurrent-models-of-visual-attention
- blog: http://torch.ch/blog/2015/09/21/rmva.html
- github: https://github.com/Element-Research/rnn/blob/master/scripts/evaluate-rva.lua
Show, Attend and Tell: Neural Image Caption Generation with Visual Attention
A Neural Attention Model for Abstractive Sentence Summarization
- intro: EMNLP 2015. Facebook AI Research
- arxiv: http://arxiv.org/abs/1509.00685
- github: https://github.com/facebook/NAMAS
Effective Approaches to Attention-based Neural Machine Translation
- intro: EMNLP 2015
- paper: http://nlp.stanford.edu/pubs/emnlp15_attn.pdf
- project: http://nlp.stanford.edu/projects/nmt/
- github: https://github.com/lmthang/nmt.matlab
Generating Images from Captions with Attention
- arxiv: http://arxiv.org/abs/1511.02793
- github: https://github.com/emansim/text2image
- demo: http://www.cs.toronto.edu/~emansim/cap2im.html
Attention and Memory in Deep Learning and NLP
Survey on the attention based RNN model and its applications in computer vision
Attention in Long Short-Term Memory Recurrent Neural Networks
How to Visualize Your Recurrent Neural Network with Attention in Keras
- blog: https://medium.com/datalogue/attention-in-keras-1892773a4f22
- github: https://github.com/datalogue/keras-attention
Papers
Generating Sequences With Recurrent Neural Networks
- arxiv: http://arxiv.org/abs/1308.0850
- github: https://github.com/hardmaru/write-rnn-tensorflow
- github: https://github.com/szcom/rnnlib
- blog: http://blog.otoro.net/2015/12/12/handwriting-generation-demo-in-tensorflow/
A Clockwork RNN
- arxiv: https://arxiv.org/abs/1402.3511
- github: https://github.com/makistsantekidis/clockworkrnn
- github: https://github.com/zergylord/ClockworkRNN
Unsupervised Learning of Video Representations using LSTMs
- intro: ICML 2015
- project page: http://www.cs.toronto.edu/~nitish/unsupervised_video/
- arxiv: http://arxiv.org/abs/1502.04681
- code: http://www.cs.toronto.edu/~nitish/unsupervised_video/unsup_video_lstm.tar.gz
- github: https://github.com/emansim/unsupervised-videos
An Empirical Exploration of Recurrent Network Architectures
Improved Semantic Representations From Tree-Structured Long Short-Term Memory Networks
- intro: ACL 2015. Tree RNNs aka Recursive Neural Networks
- arxiv: https://arxiv.org/abs/1503.00075
- slides: http://lit.eecs.umich.edu/wp-content/uploads/2015/10/tree-lstms.pptx
- gitxiv: http://www.gitxiv.com/posts/esrArT2iLmSfNRrto/tree-structured-long-short-term-memory-networks
- github: https://github.com/stanfordnlp/treelstm
- github: https://github.com/ofirnachum/tree_rnn
LSTM: A Search Space Odyssey
- arxiv: http://arxiv.org/abs/1503.04069
- notes: https://www.evernote.com/shard/s189/sh/48da42c5-8106-4f0d-b835-c203466bfac4/50d7a3c9a961aefd937fae3eebc6f540
- blog(“Dissecting the LSTM”): https://medium.com/jim-fleming/implementing-lstm-a-search-space-odyssey-7d50c3bacf93#.crg8pztop
- github: https://github.com/jimfleming/lstm_search
Inferring Algorithmic Patterns with Stack-Augmented Recurrent Nets
A Critical Review of Recurrent Neural Networks for Sequence Learning
- arxiv: http://arxiv.org/abs/1506.00019
- review: http://blog.terminal.com/a-thorough-and-readable-review-on-rnns/
Visualizing and Understanding Recurrent Networks
- intro: ICLR 2016. Andrej Karpathy, Justin Johnson, Fei-Fei Li
- arxiv: http://arxiv.org/abs/1506.02078
- slides: http://www.robots.ox.ac.uk/~seminars/seminars/Extra/2015_07_06_AndrejKarpathy.pdf
- github: https://github.com/karpathy/char-rnn
Scheduled Sampling for Sequence Prediction with Recurrent Neural Networks
- intro: Winner of MSCOCO image captioning challenge, 2015
- arxiv: http://arxiv.org/abs/1506.03099
Convolutional LSTM Network: A Machine Learning Approach for Precipitation Nowcasting
- arxiv: https://arxiv.org/abs/1506.04214
- github: https://github.com/loliverhennigh/Convolutional-LSTM-in-Tensorflow
Grid Long Short-Term Memory
- arxiv: http://arxiv.org/abs/1507.01526
- github(Torch7): https://github.com/coreylynch/grid-lstm/
Depth-Gated LSTM
- arxiv: http://arxiv.org/abs/1508.03790
- github: GitHub(dglstm.h+dglstm.cc)
Deep Knowledge Tracing
- paper: https://web.stanford.edu/~cpiech/bio/papers/deepKnowledgeTracing.pdf
- github: https://github.com/chrispiech/DeepKnowledgeTracing
Top-down Tree Long Short-Term Memory Networks
Improving performance of recurrent neural network with relu nonlinearity
- intro: ICLR 2016
- arxiv: https://arxiv.org/abs/1511.03771
Alternative structures for character-level RNNs
- intro: INRIA & Facebook AI Research. ICLR 2016
- arxiv: http://arxiv.org/abs/1511.06303
- github: https://github.com/facebook/Conditional-character-based-RNN
Long Short-Term Memory-Networks for Machine Reading
Lipreading with Long Short-Term Memory
Associative Long Short-Term Memory
Representation of linguistic form and function in recurrent neural networks
Architectural Complexity Measures of Recurrent Neural Networks
Easy-First Dependency Parsing with Hierarchical Tree LSTMs
Training Input-Output Recurrent Neural Networks through Spectral Methods
Sequential Neural Models with Stochastic Layers
Neural networks with differentiable structure
What You Get Is What You See: A Visual Markup Decompiler
- project page: http://lstm.seas.harvard.edu/latex/
- arxiv: http://arxiv.org/abs/1609.04938
- github: https://github.com/harvardnlp/im2markup
- github(Tensorflow): https://github.com/ssampang/im2latex
- github: https://github.com/opennmt/im2text
- github: https://github.com/ritheshkumar95/im2latex-tensorflow
Hybrid computing using a neural network with dynamic external memory
- intro: Nature 2016
- keywords: Differentiable Neural Computer (DNC) https://www.nature.com/articles/nature20101.epdf?author_access_token=ImTXBI8aWbYxYQ51Plys8NRgN0jAjWel9jnR3ZoTv0MggmpDmwljGswxVdeocYSurJ3hxupzWuRNeGvvXnoO8o4jTJcnAyhGuZzXJ1GEaD-Z7E6X_a9R-xqJ9TfJWBqz
- github: https://github.com/deepmind/dnc
Skip RNN: Learning to Skip State Updates in Recurrent Neural Networks
- project page: https://imatge-upc.github.io/skiprnn-2017-telecombcn/
- arxiv: https://arxiv.org/abs/1708.06834
Dilated Recurrent Neural Networks
- intro: NIPS 2017. IBM & University of Illinois at Urbana-Champaign
- keywords: DilatedRNN
- arxiv: https://arxiv.org/abs/1710.02224
- github(Tensorflow): https://github.com/code-terminator/DilatedRNN https://github.com/zalandoresearch/pt-dilate-rnn
Excitation Backprop for RNNs
https://arxiv.org/abs/1711.06778
Recurrent Relational Networks for Complex Relational Reasoning
- project page: https://rasmusbergpalm.github.io/recurrent-relational-networks/
- arxiv: https://arxiv.org/abs/1711.08028
- github: https://github.com//rasmusbergpalm/recurrent-relational-networks
Learning Compact Recurrent Neural Networks with Block-Term Tensor Decomposition
- intro: University of Electronic Science and Technology of China & Brown University & University of Utah & XJERA LABS PTE.LTD
- arxiv: https://arxiv.org/abs/1712.05134
LSTMVis
Visual Analysis of Hidden State Dynamics in Recurrent Neural Networks
- homepage: http://lstm.seas.harvard.edu/
- demo: http://lstm.seas.harvard.edu/client/index.html
- arxiv: https://arxiv.org/abs/1606.07461
- github: https://github.com/HendrikStrobelt/LSTMVis
Recurrent Memory Array Structures
Recurrent Highway Networks
- author: Julian Georg Zilly, Rupesh Kumar Srivastava, Jan Koutník, Jürgen Schmidhuber
- arxiv: http://arxiv.org/abs/1607.03474
- github(Tensorflow+Torch): https://github.com/julian121266/RecurrentHighwayNetworks/
DeepSoft: A vision for a deep model of software
Recurrent Neural Networks With Limited Numerical Precision
Hierarchical Multiscale Recurrent Neural Networks
- arxiv: http://arxiv.org/abs/1609.01704
- notes: https://github.com/dennybritz/deeplearning-papernotes/blob/master/notes/hm-rnn.md
- notes: https://medium.com/@jimfleming/notes-on-hierarchical-multiscale-recurrent-neural-networks-7362532f3b64#.pag4kund0
LightRNN
LightRNN: Memory and Computation-Efficient Recurrent Neural Networks
- intro: NIPS 2016
- arxiv: https://arxiv.org/abs/1610.09893
Full-Capacity Unitary Recurrent Neural Networks
- intro: NIPS 2016
- arxiv: https://arxiv.org/abs/1611.00035
- github: https://github.com/stwisdom/urnn
DeepCoder: Learning to Write Programs
shuttleNet: A biologically-inspired RNN with loop connection and parameter sharing
Tracking the World State with Recurrent Entity Networks
- intro: Facebook AI Research
- arxiv: https://arxiv.org/abs/1612.03969
- github(Official): https://github.com/facebook/MemNN/tree/master/EntNet-babi
Robust LSTM-Autoencoders for Face De-Occlusion in the Wild
- intro: National University of Singapore & Peking University
- arxiv: https://arxiv.org/abs/1612.08534
Simplified Gating in Long Short-term Memory (LSTM) Recurrent Neural Networks
The Statistical Recurrent Unit
- intro: CMU
- arxiv: https://arxiv.org/abs/1703.00381
Factorization tricks for LSTM networks
- intro: ICLR 2017 Workshop
- arxiv: https://arxiv.org/abs/1703.10722
- github: https://github.com/okuchaiev/f-lm
Bayesian Recurrent Neural Networks
- intro: UC Berkeley
- arxiv: https://arxiv.org/abs/1704.02798
- github: https://github.com/mirceamironenco/BayesianRecurrentNN
Fast-Slow Recurrent Neural Networks
Visualizing LSTM decisions
https://arxiv.org/abs/1705.08153
Recurrent Additive Networks
- intro: [University of Washington & Allen Institute for Artificial Intelligence
- arxiv: https://arxiv.org/abs/1705.07393
- paper: http://www.kentonl.com/pub/llz.2017.pdf
- github(PyTorch): https://github.com/bheinzerling/ran
Recent Advances in Recurrent Neural Networks
- intro: University of Toronto & University of Waterloo
- arxiv: https://arxiv.org/abs/1801.01078
Projects
NeuralTalk (Deprecated): a Python+numpy project for learning Multimodal Recurrent Neural Networks that describe images with sentences
NeuralTalk2: Efficient Image Captioning code in Torch, runs on GPU
char-rnn in Blocks
Project: pycaffe-recurrent
Using neural networks for password cracking
- blog: https://0day.work/using-neural-networks-for-password-cracking/
- github: https://github.com/gehaxelt/RNN-Passwords
torch-rnn: Efficient, reusable RNNs and LSTMs for torch
Deploying a model trained with GPU in Torch into JavaScript, for everyone to use
- blog: http://testuggine.ninja/blog/torch-conversion
- demo: http://testuggine.ninja/DRUMPF-9000/
- github: https://github.com/Darktex/char-rnn
LSTM implementation on Caffe
JNN: Java Neural Network Library
- intro: C2W model, LSTM-based Language Model, LSTM-based Part-Of-Speech-Tagger Model
- github: https://github.com/wlin12/JNN
LSTM-Autoencoder: Seq2Seq LSTM Autoencoder
RNN Language Model Variations
- intro: Standard LSTM, Gated Feedback LSTM, 1D-Grid LSTM
- github: https://github.com/cheng6076/mlm
keras-extra: Extra Layers for Keras to connect CNN with RNN
Dynamic Vanilla RNN, GRU, LSTM,2layer Stacked LSTM with Tensorflow Higher Order Ops
PRNN: A fast implementation of recurrent neural network layers in CUDA
- intro: Baidu Research
- blog: https://svail.github.io/persistent_rnns/
- github: https://github.com/baidu-research/persistent-rnn
min-char-rnn: Minimal character-level language model with a Vanilla Recurrent Neural Network, in Python/numpy
rnn: Recurrent Neural Network library for Torch7’s nn
word-rnn-tensorflow: Multi-layer Recurrent Neural Networks (LSTM, RNN) for word-level language models in Python using TensorFlow
tf-char-rnn: Tensorflow implementation of char-rnn
translit-rnn: Automatic transliteration with LSTM
- blog: http://yerevann.github.io/2016/09/09/automatic-transliteration-with-lstm/
- github: https://github.com/YerevaNN/translit-rnn
tf_lstm.py: Simple implementation of LSTM in Tensorflow in 50 lines (+ 130 lines of data generation and comments)
Handwriting generating with RNN
- github: https://github.com/Arn-O/kadenze-deep-creative-apps/blob/master/final-project/glyphs-rnn.ipynb
RecNet - Recurrent Neural Network Framework
Blogs
Survey on Attention-based Models Applied in NLP
http://yanran.li/peppypapers/2015/10/07/survey-attention-model-1.html
Survey on Advanced Attention-based Models
http://yanran.li/peppypapers/2015/10/07/survey-attention-model-2.html
Online Representation Learning in Recurrent Neural Language Models
http://www.marekrei.com/blog/online-representation-learning-in-recurrent-neural-language-models/
Fun with Recurrent Neural Nets: One More Dive into CNTK and TensorFlow
Materials to understand LSTM
https://medium.com/@shiyan/materials-to-understand-lstm-34387d6454c1#.4mt3bzoau
Understanding LSTM and its diagrams
:star::star::star::star::star:
- blog: https://medium.com/@shiyan/understanding-lstm-and-its-diagrams-37e2f46f1714
- slides: https://github.com/shi-yan/FreeWill/blob/master/Docs/Diagrams/lstm_diagram.pptx
Persistent RNNs: 30 times faster RNN layers at small mini-batch sizes
Persistent RNNs: Stashing Recurrent Weights On-Chip
- intro: Greg Diamos, Baidu Silicon Valley AI Lab
- paper: http://jmlr.org/proceedings/papers/v48/diamos16.pdf
- blog: http://svail.github.io/persistent_rnns/
- slides: http://on-demand.gputechconf.com/gtc/2016/presentation/s6673-greg-diamos-persisten-rnns.pdf
All of Recurrent Neural Networks
https://medium.com/@jianqiangma/all-about-recurrent-neural-networks-9e5ae2936f6e#.q4s02elqg
Rolling and Unrolling RNNs
https://shapeofdata.wordpress.com/2016/04/27/rolling-and-unrolling-rnns/
Sequence prediction using recurrent neural networks(LSTM) with TensorFlow: LSTM regression using TensorFlow
- blog: http://mourafiq.com/2016/05/15/predicting-sequences-using-rnn-in-tensorflow.html
- github: https://github.com/mouradmourafiq/tensorflow-lstm-regression
LSTMs
Machines and Magic: Teaching Computers to Write Harry Potter
- blog: https://medium.com/@joycex99/machines-and-magic-teaching-computers-to-write-harry-potter-37839954f252#.4fxemal9t
- github: https://github.com/joycex99/hp-word-model
Crash Course in Recurrent Neural Networks for Deep Learning
http://machinelearningmastery.com/crash-course-recurrent-neural-networks-deep-learning/
Understanding Stateful LSTM Recurrent Neural Networks in Python with Keras
Recurrent Neural Networks in Tensorflow
- part I: http://r2rt.com/recurrent-neural-networks-in-tensorflow-i.html
- part II: http://r2rt.com/recurrent-neural-networks-in-tensorflow-ii.html
Written Memories: Understanding, Deriving and Extending the LSTM
http://r2rt.com/written-memories-understanding-deriving-and-extending-the-lstm.html
Attention and Augmented Recurrent Neural Networks
- blog: http://distill.pub/2016/augmented-rnns/
- github: https://github.com/distillpub/post–augmented-rnns
Interpreting and Visualizing Neural Networks for Text Processing
https://civisanalytics.com/blog/data-science/2016/09/22/neural-network-visualization/
A simple design pattern for recurrent deep learning in TensorFlow
- blog: https://medium.com/@devnag/a-simple-design-pattern-for-recurrent-deep-learning-in-tensorflow-37aba4e2fd6b#.homq9zsyr
- github: https://github.com/devnag/tensorflow-bptt
RNN Spelling Correction: To crack a nut with a sledgehammer
Recurrent Neural Network Gradients, and Lessons Learned Therein
- blog: http://willwolf.io/en/2016/10/13/recurrent-neural-network-gradients-and-lessons-learned-therein/
A noob’s guide to implementing RNN-LSTM using Tensorflow
http://monik.in/a-noobs-guide-to-implementing-rnn-lstm-using-tensorflow/
Non-Zero Initial States for Recurrent Neural Networks
Interpreting neurons in an LSTM network
http://yerevann.github.io/2017/06/27/interpreting-neurons-in-an-LSTM-network/
Optimizing RNN (Baidu Silicon Valley AI Lab)
Optimizing RNN performance
Optimizing RNNs with Differentiable Graphs
- blog: http://svail.github.io/diff_graphs/
- notes: http://research.baidu.com/svail-tech-notes-optimizing-rnns-differentiable-graphs/
Resources
Awesome Recurrent Neural Networks - A curated list of resources dedicated to RNN
- homepage: http://jiwonkim.org/awesome-rnn/
- github: https://github.com/kjw0612/awesome-rnn
Jürgen Schmidhuber’s page on Recurrent Neural Networks
http://people.idsia.ch/~juergen/rnn.html
Reading and Questions
Are there any Recurrent convolutional neural network network implementations out there ?